PSY 503: Foundations of Psychological Methods Lecture 10: Joint Distributions of Random Variables

Robin Gomila

Princeton

September 30, 2020

Joint distributions

- We introduced the concept of random variable
- We saw how to use the probability mass function (PDF) and the cumulative distribution function (CDF) to compute the probability that a discrete random variable Y takes some given set of values $y_1, y_2, \dots y_n$
- We introduced parametric distributions
- We learned how to summarize random variables
- So far, we have treated each rv in isolation. Today, we focus on the study of relationships between random variables.

- Suppose that you are the Secretary of Defense of your country. You
 have to decide on the total size of the army for the coming year
- Your main concern is the possibility that a military conflict starts either in Country A or in Country B
 - If a conflict starts in Country A, you will need to send 10,000 soldiers to Country A
 - If a conflict starts in Country B, you will need to send 10,000 soldiers to Country B
- One objective: have the smallest possible army subject to the constraint that, no matter what happens, there is no shortage of soldiers

- Let X_A be a Bernoulli rv equals to 1 if a conflict starts in Country A (and 0 otherwise). Let X_B be a Bernoulli rv equals to 1 if a conflict starts in Country B (and 0 otherwise).
- Assume

$$X_A \sim Bern(0.5)$$

$$X_B \sim Bern(0.5)$$

• Do you have enough information to make an efficient decision about how many many soldiers to enroll?

- No. As the Secretary of Defense, you only care about the probability that there is a conflict both in Country A and in Country B
- If the probability that there is a conflict both in Country A and in Country B is zero, you should decide to have an army of only 10,000 soldiers
- If this probability is positive, then you should plan to have an army of 20,000 soldiers
- \bullet In this setting, the separate PMFs of X_A and X_B do not provide enough information
 - No information on the degree of association between these two random variables
 - No way to compute $P({X_A = 1}) \cap {P(X_B = 1)}$

Joint Probability Mass Function

Given a pair of discrete rvs X_A and X_B , the **joint probability mass** function describes the probability that X_A takes value x_A and X_B takes value x_B , for any possible value of (x_A, x_B)

$$p(x_A, x_B) = P(\{X_A = x_A\} \cap \{P(X_B = x_B\})$$

= $P(\{X_A = x_A\}, \{P(X_B = x_B\})$ (1)

In our example, one possible joint probability distribution of X_A and X_B is

	$X_B=0$	$X_B = 1$
$X_A=0$	0	0.5
$X_A = 1$	0.5	0

- In this configuration, you should enroll exactly 10,000 soldiers
- Probability that both countries suffer a military conflict simultaneously is 0
- Probability that none of them suffers a military conflict simultaneously is 0

• What else could have happened?

$$egin{array}{c|c|c} X_B = 0 & X_B = 1 \\ X_A = 0 & 0.25 & 0.25 \\ X_A = 1 & 0.25 & 0.25 \\ \end{array}$$

• In all 3 joint probability distributions above, it is true that $P(X_A=1)=0.5$ and $P(X_B=1)=0.5$. The only feature that changes across them is the dependence or association between the random variables X_A and X_B

Properties of Joint PMFs

Just like univariate PMFs, joint PMFs are nonnegative and sum to 1. For two random variables X and Y:

$$\sum_{x} \sum_{y} P(X = x, Y = y) = 1$$

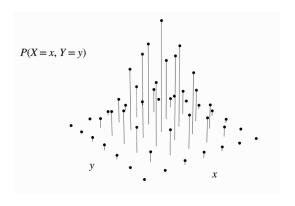
From joint PMF to marginal PMFs

- ullet We can use the joint distribution of X and Y to get the univariate PMFs of X and Y
- \bullet To get the univariate PMF of X we simply sum over the possible values of Y
- This univariate PMF is called the marginal distribution of X, defined as

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

ullet Keep in mind that there is no way to derive the joint distribution of X and Y from the (separate) univariate distributions of X and Y

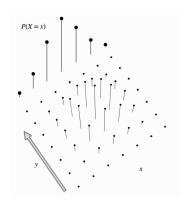
From joint PMF to marginal PMFs



• The total height of vertical bars is:

$$\sum_{x} \sum_{y} P(X = x, Y = y) = 1$$

From joint PMF to marginal PMFs



 \bullet For any value of x the probability P(X=x) is the total height of the bars in the corresponding column of the joint PMF

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

Conditional PMF

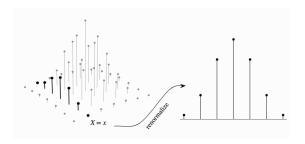
ullet The conditional PMF of Y given X is

$$P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

- ullet This should be understood as a function of Y for fixed x
- When it is most convenient, we can relate the conditional distribution of Y given X=x to that of X given Y=y, using Baye's rule:

$$P(Y = y|X = x) = \frac{P(X = x|Y = y)P(Y = y)}{P(X = x)}$$

Conditional PMF



- ullet We first take the joint PMF and focus on the vertical bars where X takes on the value x (i.e., the conditional PMF). All the other vertical bars are inconsistent with the knowledge that X=x occurred
- ullet Then we renormalize the conditional PMF by dividing by P(X=x), which ensures that the conditional PMF will sum to 1

Independence of random variables

- \bullet Probability theory: two events A and B are independent if P(A|B) = P(A)
 - Remember $P(A \cap B) = P(A)P(B)$
- ullet Analogously, two random variables Z and Y are independent if:
 - ullet Z tells us nothing about $Y.\ Y$ tells us nothing about Z.
- This is very important in experimental research!
 - Independence of treatment and background characteristics

Properties of independent random variables

$$P(Z = z, Y = y) = P(Z = z)P(Y = y)$$

$$\mathbb{E}[ZY] = \mathbb{E}[Z]\mathbb{E}[Y]$$

Quantifying the Dependence Between Random Variables

Relationship between PMFs

- Joint PMFs often contain too much information
- We often want to summarize joint distributions
 - Strength of their relationship, i.e., how dependent they are from each other

Covariance

Let X and Y be two random variables, the covariance between X and Y is defined as

$$\mathbb{C}(X,Y) = \mathbb{E}\Big[(X - E[X])(Y - E[Y])\Big]$$

Note that this is equivalent to:

$$\mathbb{C}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Properties of Covariance

$$\mathbb{C}[X,X] = \mathbb{V}[X]$$

$$\mathbb{C}[X,Y] = \mathbb{C}[Y,X]$$

$$\mathbb{C}[X+a,Y+b]=\mathbb{C}[X,Y]$$

$$\mathbb{C}[aX, bY] = ab\,\mathbb{C}[X, Y]$$

Limitations of covariance

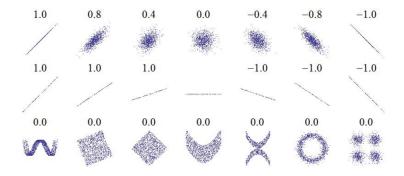
- Magnitude of $\mathbb{C}[X,Y]$ depends on the scales of X and Y
 - Difficult use covariance to interpret the strength of the relationship between two variables
- Use correlation

Correlation

$$\rho(X,Y) = \frac{\mathbb{C}[X,Y]}{\sigma_X \sigma_Y}$$

• Bounds: $-1 \le \rho_{XY} \le 1$

Correlation is linear



Correlation given independence

- Does knowing that X and Y are two independent random variables inform us about their covariance?
 - By definition, when variables are independent, one variable cannot be used to predict the other
 - Correlation is null
- Proof starts with definition of covariance:
 - $\mathbb{C}(X,Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
 - If independence: $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
 - Therefore, $\mathbb{C}(X,Y)=0$. And as a result, correlation is null.

Independence given (null) correlation

- \bullet Knowing that $\rho(X,Y)=0$ does ${\bf not}$ imply that X and Y are independent
- See figure above

Properties of variance for two variables

$$\mathbb{V}[aX + bY] = a^2 \,\mathbb{V}[X] + b^2 \,\mathbb{V}[Y] + 2ab \,\mathbb{C}[X, Y]$$

Therefore, if X and Y are independent:

$$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y]$$

Properties of variance for two variables

$$\mathbb{V}[aX - bY] = a^2 \,\mathbb{V}[X] + b^2 \,\mathbb{V}[Y] - 2ab \,\mathbb{C}[X, Y]$$

Therefore, if X and Y are independent:

$$\mathbb{V}[X-Y] = \mathbb{V}[X] + \mathbb{V}[Y]$$