PSY 503: Foundations of Psychological Methods Lecture 11: Estimation and Uncertainty I

Robin Gomila

Princeton

October 3, 2020

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

Congratulations!

• It's been less than 6 weeks!

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

- It's been less than 6 weeks!
- Be proud of yourself!

- It's been less than 6 weeks!
- Be proud of yourself!
- Your problem set answers are great!

- It's been less than 6 weeks!
- Be proud of yourself!
- Your problem set answers are great!
- Crystallizing knowledge takes time!

• Potential Outcomes / Experimental Design

- Potential Outcomes / Experimental Design
- Probability theory

- Potential Outcomes / Experimental Design
- Probability theory
- Bayes' rule

- Potential Outcomes / Experimental Design
- Probability theory
- Bayes' rule
- Expectations

- Potential Outcomes / Experimental Design
- Probability theory
- Bayes' rule
- Expectations
- R

- Potential Outcomes / Experimental Design
- Probability theory
- Bayes' rule
- Expectations
- R
- R Markdown

- Potential Outcomes / Experimental Design
- Probability theory
- Bayes' rule
- Expectations
- R
- R Markdown
- Simulation

```
Where are we going?
```

• Statistical inference: right now!

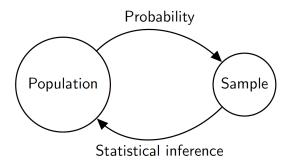
Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

- Statistical inference: right now!
- Estimation (standard error, confidence intervals, statistical power)
- Hypothesis testing (p-values, null hypotheses)
- Regression

- Statistical inference: right now!
- Estimation (standard error, confidence intervals, statistical power)
- Hypothesis testing (p-values, null hypotheses)
- Regression
- I know it's Monday morning...

- Statistical inference: right now!
- Estimation (standard error, confidence intervals, statistical power)
- Hypothesis testing (p-values, null hypotheses)
- Regression
- I know it's Monday morning... but I hope that you are excited!

Statistical Inference



• Parameter

• Quantity of Interest (e.g., ATE)

• Parameter

• Quantity of Interest (e.g., ATE)

• Estimate

• Specific value obtained from a given set of observations (e.g., \widehat{ATE})

Parameter

• Quantity of Interest (e.g., ATE)

• Estimate

• Specific value obtained from a given set of observations (e.g., \widehat{ATE})

• Estimator

• Procedure or formula used to make guesses about a parameter (e.g., difference in means between control and treatment groups)

• Suppose we want to estimate the the proportion of American voters who support Joe Biden

- Suppose we want to estimate the the proportion of American voters who support Joe Biden
- We randomly sample *n* American voters from the population of interest without replacement
 - Representative sample of American voters

- Suppose we want to estimate the the proportion of American voters who support Joe Biden
- We randomly sample *n* American voters from the population of interest without replacement
 - Representative sample of American voters
- We ask: Do you support Joe Biden?

- Suppose we want to estimate the the proportion of American voters who support Joe Biden
- We randomly sample *n* American voters from the population of interest without replacement
 - Representative sample of American voters
- We ask: Do you support Joe Biden?

 $\bullet\,$ Let p denote the population proportion of Biden supporters.

- Let p denote the population proportion of Biden supporters.
- Let X represents response to survey question
 - $X_i = 1$ if voter i supports Biden
 - $X_i = 0$ if voter i does not support Biden

- $\bullet\,$ Let p denote the population proportion of Biden supporters.
- Let X represents response to survey question
 - $X_i = 1$ if voter *i* supports Biden
 - $X_i = 0$ if voter i does not support Biden
- Random sampling: {X₁, X₂, ..., X_n} are **independently and identically distributed** Bernoulli random variables with success probability p

Estimator: Sample mean (i.e., proportion)

Estimator: Sample mean (i.e., proportion)

$$\bar{X} = \sum_{i=1}^{n} \frac{X_i}{n}$$

We use this estimator to estimate the unknown parameter p.

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

Estimation error

• How good is an estimate?

estimation error = estimate - truth = $\bar{X_n} - p$

• How good is an estimate?

estimation error = estimate - truth = $\bar{X_n} - p$

• How do we compute estimator error when we do statistical inference?

• How good is an estimate?

estimation error = estimate - truth = $\bar{X_n} - p$

• How do we compute estimator error when we do statistical inference?

 $\, \bullet \,$ We can never compute estimation error because we do not know p

• Any estimator (e.g., sample mean \bar{X} , difference in means between treatment and control) can be considered a random variable that has its own distribution over the repeated use of random sampling

- Any estimator (e.g., sample mean \bar{X} , difference in means between treatment and control) can be considered a random variable that has its own distribution over the repeated use of random sampling
- Presidential Election example: sample mean/proportion $\bar{X_n}$ is a binomial random variable, divided by n, with success probability p and size n.

- Any estimator (e.g., sample mean \bar{X} , difference in means between treatment and control) can be considered a random variable that has its own distribution over the repeated use of random sampling
- Presidential Election example: sample mean/proportion $\bar{X_n}$ is a binomial random variable, divided by n, with success probability p and size n. We have

bias =
$$\mathbb{E}[\text{estimation error}] = \mathbb{E}[\text{estimate} - \text{truth}] = \mathbb{E}[\overline{X_n}] - p$$

- Any estimator (e.g., sample mean \bar{X} , difference in means between treatment and control) can be considered a random variable that has its own distribution over the repeated use of random sampling
- Presidential Election example: sample mean/proportion $\bar{X_n}$ is a binomial random variable, divided by n, with success probability p and size n. We have

bias
$$= \mathbb{E}[\mathsf{estimation} \; \mathsf{error}] = \mathbb{E}[\mathsf{estimate} - \mathsf{truth}] = \mathbb{E}[ar{X_n}] - p$$

In this example, random sampling implies that

$$\mathbb{E}[\bar{X_n}] - p = p - p = 0$$

General result for the sample mean

 Regardless of the distribution of the random variables, random sampling provides a way to use the sample average as an unbiased estimator of the population mean. We have

$$\mathbb{E}[\bar{X_n}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \mathbb{E}[X]$$

General result for the sample mean

 Regardless of the distribution of the random variables, random sampling provides a way to use the sample average as an unbiased estimator of the population mean. We have

$$\mathbb{E}[\bar{X_n}] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \mathbb{E}[X]$$

• Random sampling eliminates bias

Convergence of Estimators

As the sample size increases, the sample average converges to the expectation or population average.

Let's open R Studio...

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

Suppose that we obtain a random sample of n i.i.d. observations $X_1, X_2, ..., X_n$, from a random variables with expectation $\mathbb{E}[X]$. The law of large numbers states

Suppose that we obtain a random sample of n i.i.d. observations $X_1, X_2, ..., X_n$, from a random variables with expectation $\mathbb{E}[X]$. The law of large numbers states

$$\bar{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}[X]$$

where we use \rightarrow as shorthand for convergence.

 \bullet Implies that sample average $\bar{X_n}$ will better approximate $\mathbb{E}[X]$ as sample size increases

- \bullet Implies that sample average $\bar{X_n}$ will better approximate $\mathbb{E}[X]$ as sample size increases
- Super powerful: can be applied in most settings without knowledge of the underlying probability distribution

Law of Large Numbers and Monte Carlo Simulation

Law of Large Numbers and Monte Carlo Simulation

- The Law of Large number justifies the use of Monte Carlo simulations
 - i.e., repeat simulation trials many many times and take the mean of these trials
 - e.g., we used Monte Carlo simulation for the trendy restaurant in NY and pregnancy probabilities

Law of Large Numbers and estimation error

Law of Large Numbers and estimation error

• Estimation error becomes smaller as the sample size increases

Consistency of estimators

An **estimator** is said to be **consistent** is it converges to the parameter as the sample size goes to infinity.

Unbiasedness and Consistency of the sample mean

- Good estimators: unbiased and consistent!
- The sample mean is a good estimator of the population mean

Unbiasedness and Consistency of the sample mean

- Good estimators: unbiased and consistent!
- The sample mean is a good estimator of the population mean

$$\mathbb{E}[\bar{X_n}] = \mathbb{E}[X] \text{ and } \bar{X_n} \to \mathbb{E}[X]$$

Biased and not consistent estimator of the population mean

Biased and not consistent estimator of the population mean

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}+n$$

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

Biased but consistent estimator of the population mean

Biased but consistent estimator of the population mean

$$\frac{1}{n}\sum_{i=1}^{n}X_i + \frac{1}{n}$$

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

Unbiased but not consistent estimator of the population mean

Unbiased but not consistent estimator of the population mean

 X_n

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

Difference-in-means estimators of the average treatment effect in experiments

SATE

• The **difference-in-means** between treatment and control groups in an experiment is an **unbiased** and **consistent** estimator of the sample average treatment effect (SATE) IF:

SATE

- The difference-in-means between treatment and control groups in an experiment is an unbiased and consistent estimator of the sample average treatment effect (SATE) IF:
 - Participants randomly assigned to an experimental condition

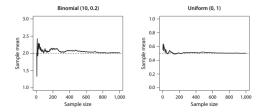
• The **difference-in-means** between treatment and control groups in an experiment is an **unbiased** and **consistent** estimator of the population average treatment effect (PATE) IF:

- The **difference-in-means** between treatment and control groups in an experiment is an **unbiased** and **consistent** estimator of the population average treatment effect (PATE) IF:
 - 1 Participants were randomly sampled from the population
 - 2 Participants randomly assigned to an experimental condition

Understanding and Quantifying Uncertainty of Estimates

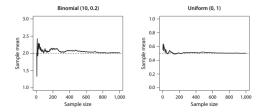
• Law of Large Number cannot quantify how good an estimate becomes as *n* increases

• Law of Large Number cannot quantify how good an estimate becomes as *n* increases



• e.g., convergence seems to occur faster for the uniform distribution on this figure, compared to binomial distribution

• Law of Large Number cannot quantify how good an estimate becomes as *n* increases



- e.g., convergence seems to occur faster for the uniform distribution on this figure, compared to binomial distribution
- In practice, we only observe one sample mean and do not know the expectation
- We need a different tool to know how well our sample mean approximates the expectation

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

- \bullet Let V be the proportion of Princeton undergrads who would report that they violated a social norm last week
- Suppose that we know that $V \sim Bern(0.25)$
- ${\ensuremath{\, \bullet }}\xspace V$ returns 1 if student respond yes, no otherwise

Sampling distribution of mean estimator

Back to R Studio...

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I

Standard Error of the sample mean

Suppose that we have a sample of n i.i.d. random variables $\{X_1, X_2, ..., X_n\}$. The standard error of the sample mean $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ is given by

standard error of the sample mean =
$$\sqrt{\mathbb{V}[\bar{X_n}]}$$

Standard Error of the sample mean

• Let's take a closer look at: $\mathbb{V}[\bar{X_n}]$:

$$\mathbb{V}[\bar{X_n}] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$
$$= \frac{1}{n^2}\mathbb{V}\left[\sum_{i=1}^n X_i\right]$$
$$= \frac{1}{n}\mathbb{V}[X_i]$$
$$= \frac{\mathbb{V}[X]}{n}$$

Standard Error of the sample mean

standard error of the sample mean
$$=\sqrt{\widehat{\mathbb{V}[X_n]}} = \sqrt{\frac{\widehat{\mathbb{V}[X]}}{n}}$$

• Therefore, we can compute the standard error of the estimator by estimating the variance of the estimator $\mathbb{V}[\bar{X}]$ using the sample variance.

Standard Error of the difference-in-means estimator

Suppose that we have a sample of n i.i.d. random variables $\{T_i, T_2, ..., T_n\}$. And that we also have another sample of m independently and i.i.d random variables $\{C_i, C_2, ..., C_n\}$.

Then the **standard error** of the difference-in-means estimator $\sum_{i=1}^n \frac{T_i}{n} - \sum_{i=1}^m \frac{C_i}{m}$ is given by

standard error of the difference-in-means estimator = $\sqrt{\frac{\widetilde{\mathbb{V}[T]}}{n} + \frac{\widetilde{\mathbb{V}[C]}}{m}}$

Central Limit Theorem

The distribution of the sample mean approaches the normal distribution as the sample size increases.

Central Limit Theorem

- Kicks in regardless of the distribution of the random variable
- This result is incredibly useful because the normal distribution is a parametric distribution
- This allows us to quantify the uncertainty of our estimates!