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Congratulations!
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You have learned so much

It’s been less than 6 weeks!

Be proud of yourself!

Your problem set answers are great!

Crystallizing knowledge takes time!
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Methodological plasticity

Potential Outcomes / Experimental Design

Probability theory

Bayes’ rule

Expectations

R

R Markdown

Simulation
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Where are we going?

Statistical inference: right now!

Estimation (standard error, confidence intervals, statistical power)

Hypothesis testing (p-values, null hypotheses)

Regression

I know it’s Monday morning. . . but I hope that you are excited!
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Statistical Inference
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Estimation

Parameter
Quantity of Interest (e.g., ATE)

Estimate
Specific value obtained from a given set of observations (e.g., ÂTE)

Estimator
Procedure or formula used to make guesses about a parameter (e.g.,
difference in means between control and treatment groups)
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Illustration: Presidential Election

Suppose we want to estimate the the proportion of American voters
who support Joe Biden

We randomly sample n American voters from the population of
interest without replacement

Representative sample of American voters

We ask: Do you support Joe Biden?
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Illustration: Presidential Election

Let p denote the population proportion of Biden supporters.

Let X represents response to survey question
Xi = 1 if voter i supports Biden

Xi = 0 if voter i does not support Biden

Random sampling: {X1, X2, ..., Xn} are independently and
identically distributed Bernoulli random variables with success
probability p
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Estimator: Sample mean (i.e., proportion)

X̄ =
n∑

i=1

Xi

n

We use this estimator to estimate the unknown parameter p.
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Estimation error

How good is an estimate?

estimation error = estimate - truth =X̄n − p

How do we compute estimator error when we do statistical inference?
We can never compute estimation error because we do not know p
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Revisiting bias

Any estimator (e.g., sample mean X̄, difference in means between
treatment and control) can be considered a random variable that has
its own distribution over the repeated use of random sampling

Presidential Election example: sample mean/proportion X̄n is a
binomial random variable, divided by n, with success probability p and
size n. We have

bias = E[estimation error] = E[estimate− truth] = E[X̄n]− p

In this example, random sampling implies that

E[X̄n]− p = p− p = 0
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General result for the sample mean

Regardless of the distribution of the random variables, random
sampling provides a way to use the sample average as an unbiased
estimator of the population mean. We have

E[X̄n] = 1
n

n∑
i=1

E[Xi] = E[X]

Random sampling eliminates bias
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Convergence of Estimators
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Law of Large Numbers

As the sample size increases, the sample average converges to the
expectation or population average.
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Law of Large Numbers

Let’s open R Studio. . .
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Law of Large Numbers

Suppose that we obtain a random sample of n i.i.d. observations
X1, X2, ..., Xn, from a random variables with expectation E[X]. The law
of large numbers states

X̄n = 1
n

n∑
i=1

Xi → E[X]

where we use → as shorthand for convergence.
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Law of Large Numbers

Implies that sample average X̄n will better approximate E[X] as
sample size increases

Super powerful: can be applied in most settings without knowledge of
the underlying probability distribution
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Law of Large Numbers and Monte Carlo Simulation

The Law of Large number justifies the use of Monte Carlo simulations
i.e., repeat simulation trials many many times and take the mean of
these trials

e.g., we used Monte Carlo simulation for the trendy restaurant in NY
and pregnancy probabilities
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Law of Large Numbers and estimation error

Estimation error becomes smaller as the sample size increases
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Consistency of estimators

An estimator is said to be consistent is it converges to the parameter as
the sample size goes to infinity.
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Unbiasedness and Consistency of the sample mean

Good estimators: unbiased and consistent!

The sample mean is a good estimator of the population mean

E[X̄n] = E[X] and X̄n → E[X]
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Biased and not consistent estimator of the population
mean

1
n

n∑
i=1

Xi + n
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Unbiased but not consistent estimator of the population
mean

Xn
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Unbiased but not consistent estimator of the population
mean

Xn
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Difference-in-means estimators of the average
treatment effect in experiments
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SATE

The difference-in-means between treatment and control groups in
an experiment is an unbiased and consistent estimator of the
sample average treatment effect (SATE) IF:

Participants randomly assigned to an experimental condition
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PATE

The difference-in-means between treatment and control groups in
an experiment is an unbiased and consistent estimator of the
population average treatment effect (PATE) IF:

1 Participants were randomly sampled from the population

2 Participants randomly assigned to an experimental condition
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Understanding and Quantifying Uncertainty of
Estimates
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Quantifying uncertainty
Law of Large Number cannot quantify how good an estimate
becomes as n increases

e.g., convergence seems to occur faster for the uniform distribution
on this figure, compared to binomial distribution

In practice, we only observe one sample mean and do not know the
expectation

We need a different tool to know how well our sample mean
approximates the expectation
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Quantifying uncertainty

Let V be the proportion of Princeton undergrads who would report
that they violated a social norm last week

Suppose that we know that V ∼ Bern(0.25)

V returns 1 if student respond yes, no otherwise
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Sampling distribution of mean estimator

Back to R Studio. . .
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Standard Error of the sample mean

Suppose that we have a sample of n i.i.d. random variables
{X1, X2, ..., Xn}. The standard error of the sample mean
X̄n = 1

n

∑n
i=1 Xi is given by

standard error of the sample mean =
√
V̂[X̄n]

Robin Gomila | PSY 503 | Lecture 11: Estimation and Uncertainty I 33



Standard Error of the sample mean

Let’s take a closer look at: V[X̄n]:

V[X̄n] = V
[ 1

n

n∑
i=1

Xi

]

= 1
n2V

[ n∑
i=1

Xi

]
= 1

n
V[Xi]

= V[X]
n
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Standard Error of the sample mean

standard error of the sample mean =
√
V̂[X̄n] =

√
V̂[X]

n

Therefore, we can compute the standard error of the estimator by
estimating the variance of the estimator V[X̄] using the sample
variance.
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Standard Error of the difference-in-means estimator

Suppose that we have a sample of n i.i.d. random variables
{Ti, T2, ..., Tn}. And that we also have another sample of of m
independently and i.i.d random variables {Ci, C2, ..., Cn}.

Then the standard error of the difference-in-means estimator∑n
i=1

Ti
n −

∑m
i=1

Ci
m is given by

standard error of the difference-in-means estimator =

√
V̂[T ]

n
+ V̂[C]

m
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Central Limit Theorem

The distribution of the sample mean approaches the normal
distribution as the sample size increases.
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Central Limit Theorem

Kicks in regardless of the distribution of the random variable

This result is incredibly useful because the normal distribution is a
parametric distribution

This allows us to quantify the uncertainty of our estimates!
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