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Central Limit Theorem

The distribution of the sample mean approaches the normal
distribution as the sample size increases.
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Central Limit Theorem

Kicks in regardless of the distribution of the random variable

This result is incredibly useful because the normal distribution is a
parametric distribution

This allows us to quantify the uncertainty of our estimates!
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The normal distribution

Also called the Gaussian distribution

Can take any number on the real line (−∞,∞)
Continuous distribution

Two parameters:
mean µ

standard deviation σ

If X is a random variable, we may write

X ∼ N(µ, σ2)
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The normal distribution: PDF and CDF

PDF: bell shaped, centered and symmetric around µ

Standard deviation “controls” for the spread of the distribution

Different means shift the PDF and CDF without changing their shape

Larger standard deviations mean more variability
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FYI: PDF of the normal distribution

f(x; (µ, σ)) = 1
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, −∞ ≤ x ≤ ∞
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Standard normal distribution

The standard normal distribution is a normal distribution with µ = 0 and
σ = 1
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The normal distribution: Properties

1 Adding a constant to (substracting a constant from) a normal random
variable yields another normal random variable

2 Multiplying / dividing a random variable by a constant yields another
normal random variable
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The normal distribution: Properties

Let X ∼ N(µ, σ2). Let c be a constant. Then the following properties
hold:

1 A random variable defined by Z = X + c also follows a normal
distribution, with Z ∼ N(µ+ c, σ2)

2 A random variable defined by Z = cX also follows a normal
distribution, with Z ∼ N(cµ, (cσ)2)
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Implication

X − µ
σ

is normally distributed.

This is the formula for the z-score of X, which represents the number of
standard deviations an observation is above vs. below the mean.

As a result,

z-score = X − µ
σ

∼ N(0, 1)
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The normal distribution: Properties

If a random variable is defined on X ∼ N(µ, σ2) (independently of the
values of µ and σ):

the area under the normal curve between µ− σ and µ+ σ is about
0.68. Formally, P (µ− σ ≤ X ≤ µ+ σ) = 0.68

the area under the normal curve between µ− 1.64σ and µ+ 1.64σ is
about 0.90. Formally, P (µ− 1.64σ ≤ X ≤ µ+ 1.64σ) = 0.90

the area under the normal curve between µ− 1/96σ and µ+ 1.96σ is
about 0.95. Formally, P (µ− 1.96σ ≤ X ≤ µ+ 1.96σ) = 0.95

the area under the normal curve between µ− 2.58σ and µ+ 2.58σ is
about 0.99. Formally, P (µ− 2.58σ ≤ X ≤ µ+ 2.58σ) = 0.99

the area under the normal curve between µ− 3σ and µ+ 3σ is about
0.997. Formally, P (µ− 3σ ≤ X ≤ µ+ 3σ) = 0.997

Robin Gomila | PSY 503 | Lecture 12: Estimation and Uncertainty II 11



The normal distribution: Properties

If a random variable is defined on X ∼ N(µ, σ2) (independently of the
values of µ and σ):

the area under the normal curve between µ− σ and µ+ σ is about
0.68. Formally, P (µ− σ ≤ X ≤ µ+ σ) = 0.68

the area under the normal curve between µ− 1.64σ and µ+ 1.64σ is
about 0.90. Formally, P (µ− 1.64σ ≤ X ≤ µ+ 1.64σ) = 0.90

the area under the normal curve between µ− 1/96σ and µ+ 1.96σ is
about 0.95. Formally, P (µ− 1.96σ ≤ X ≤ µ+ 1.96σ) = 0.95

the area under the normal curve between µ− 2.58σ and µ+ 2.58σ is
about 0.99. Formally, P (µ− 2.58σ ≤ X ≤ µ+ 2.58σ) = 0.99

the area under the normal curve between µ− 3σ and µ+ 3σ is about
0.997. Formally, P (µ− 3σ ≤ X ≤ µ+ 3σ) = 0.997

Robin Gomila | PSY 503 | Lecture 12: Estimation and Uncertainty II 11



The normal distribution: Properties

If a random variable is defined on X ∼ N(µ, σ2) (independently of the
values of µ and σ):

the area under the normal curve between µ− σ and µ+ σ is about
0.68. Formally, P (µ− σ ≤ X ≤ µ+ σ) = 0.68

the area under the normal curve between µ− 1.64σ and µ+ 1.64σ is
about 0.90. Formally, P (µ− 1.64σ ≤ X ≤ µ+ 1.64σ) = 0.90

the area under the normal curve between µ− 1/96σ and µ+ 1.96σ is
about 0.95. Formally, P (µ− 1.96σ ≤ X ≤ µ+ 1.96σ) = 0.95

the area under the normal curve between µ− 2.58σ and µ+ 2.58σ is
about 0.99. Formally, P (µ− 2.58σ ≤ X ≤ µ+ 2.58σ) = 0.99

the area under the normal curve between µ− 3σ and µ+ 3σ is about
0.997. Formally, P (µ− 3σ ≤ X ≤ µ+ 3σ) = 0.997

Robin Gomila | PSY 503 | Lecture 12: Estimation and Uncertainty II 11



The normal distribution: Properties

If a random variable is defined on X ∼ N(µ, σ2) (independently of the
values of µ and σ):

the area under the normal curve between µ− σ and µ+ σ is about
0.68. Formally, P (µ− σ ≤ X ≤ µ+ σ) = 0.68

the area under the normal curve between µ− 1.64σ and µ+ 1.64σ is
about 0.90. Formally, P (µ− 1.64σ ≤ X ≤ µ+ 1.64σ) = 0.90

the area under the normal curve between µ− 1/96σ and µ+ 1.96σ is
about 0.95. Formally, P (µ− 1.96σ ≤ X ≤ µ+ 1.96σ) = 0.95

the area under the normal curve between µ− 2.58σ and µ+ 2.58σ is
about 0.99. Formally, P (µ− 2.58σ ≤ X ≤ µ+ 2.58σ) = 0.99

the area under the normal curve between µ− 3σ and µ+ 3σ is about
0.997. Formally, P (µ− 3σ ≤ X ≤ µ+ 3σ) = 0.997

Robin Gomila | PSY 503 | Lecture 12: Estimation and Uncertainty II 11



The normal distribution: Properties

If a random variable is defined on X ∼ N(µ, σ2) (independently of the
values of µ and σ):

the area under the normal curve between µ− σ and µ+ σ is about
0.68. Formally, P (µ− σ ≤ X ≤ µ+ σ) = 0.68

the area under the normal curve between µ− 1.64σ and µ+ 1.64σ is
about 0.90. Formally, P (µ− 1.64σ ≤ X ≤ µ+ 1.64σ) = 0.90

the area under the normal curve between µ− 1/96σ and µ+ 1.96σ is
about 0.95. Formally, P (µ− 1.96σ ≤ X ≤ µ+ 1.96σ) = 0.95

the area under the normal curve between µ− 2.58σ and µ+ 2.58σ is
about 0.99. Formally, P (µ− 2.58σ ≤ X ≤ µ+ 2.58σ) = 0.99

the area under the normal curve between µ− 3σ and µ+ 3σ is about
0.997. Formally, P (µ− 3σ ≤ X ≤ µ+ 3σ) = 0.997

Robin Gomila | PSY 503 | Lecture 12: Estimation and Uncertainty II 11



The normal distribution: Properties

If a random variable is defined on X ∼ N(µ, σ2) (independently of the
values of µ and σ):

the area under the normal curve between µ− σ and µ+ σ is about
0.68. Formally, P (µ− σ ≤ X ≤ µ+ σ) = 0.68

the area under the normal curve between µ− 1.64σ and µ+ 1.64σ is
about 0.90. Formally, P (µ− 1.64σ ≤ X ≤ µ+ 1.64σ) = 0.90

the area under the normal curve between µ− 1/96σ and µ+ 1.96σ is
about 0.95. Formally, P (µ− 1.96σ ≤ X ≤ µ+ 1.96σ) = 0.95

the area under the normal curve between µ− 2.58σ and µ+ 2.58σ is
about 0.99. Formally, P (µ− 2.58σ ≤ X ≤ µ+ 2.58σ) = 0.99

the area under the normal curve between µ− 3σ and µ+ 3σ is about
0.997. Formally, P (µ− 3σ ≤ X ≤ µ+ 3σ) = 0.997

Robin Gomila | PSY 503 | Lecture 12: Estimation and Uncertainty II 11



Central Limit Theorem

Suppose that we obtain a random sample of n i.i.d. observations
X1, X2, ..., Xn from a probability distribution with mean E[X] and
variance V[X].

Let’s denote the sample average X̄n =
∑n

i=1
Xi
n .

Then the central limit theorem states that the sample mean converges in
distribution to the normal distribution. We write

X̄n → N(E[X], V[X]
n

)
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Confidence intervals

Range of values that are likely to include the true value of the
parameter

Researcher needs to decide the confidence level
Degree to which they’d like to be certain that the interval actually
contains the true value of the parameter

Over a hypothetically repeated data-generating process, CIs
contain the true value of the parameter with the probability of the
confidence level (e.g., 95% confidence level)

Confidence level often written (1− α) ∗ 100%, where α can take any
value between 0 and 1

e.g., α = .05 corresponds to the 95% confidence level
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Confidence intervals
How do we calculate the 95% confidence of the sample mean for a
sufficiently large sample of observations?

Using the CLT, we know that sample mean is normally distributed

Lower value of confidence interval is

[X̄n − 1.96× SD(X̄)] = [X̄n − 1.96× standard error]

Upper value of confidence interval is

[X̄n + 1.96× SD(X̄)] = [X̄n + 1.96× standard error]

95 % confidence Interval is

[X̄n − 1.96× standard error, X̄n + 1.96× standard error]
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Confidence intervals

Let’s open R Studio. . .
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Confidence intervals and p-values

Two sides of the same coin

Suppose a random sample, a sample mean, and a null hypothesis that
the sample mean is different from k. We will reject the null
hypothesis at the significance level α (i.e., p < α) if and only if the
confidence interval with confidence level 1− α does not include k

This applies to difference-in-means estimator
e.g., We reject the null hypothesis that there is no difference between
the treatment and control groups at the 95% confidence level if and
only if the 95% CI of the difference-in-means does not include zero,
which corresponds to a p-value for a hypothesis test lower than .05
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Small samples: the t-distribution
Wondering how all of this relate to the t-distribution or t-tests?

Small samples: more conservative test
t-distribution has fatter tails

coverage is more conservative

depends on degree of freedom: a direct function of the sample size

as sample size increases, approaches normal distribution
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Small samples: the t-distribution

In small samples, the sampling distribution of the mean of variable
X follows a t-distribution if and only if X is normally distributed!!!

This implies that until your sample is large enough for the CLT to kick in,
t-tests won’t work unless you assume that X is normally distributed. Most
often NOT the case!
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Illustration: Difference-in-means estimator

Go to R Studio. . .
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