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What is regression?

Regression quantifies how an outcome variable Y varies, on average,
as a function of:

One variable (e.g., treatment assignment Z, treatment D, a predictor
X)

Or more than one variables (e.g. a series of predictors X1, ..., Xn)

Let’s focus on the bivariate case for now
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OK! Wait! What is regression again?

What is specific about regression in terms of quantifying the
relationship between two variables? For example, how is regression
different from correlation or covariance?

Regression describes conditional expectations
Example:

E[Yi|Zi = z]

i.e., “the conditional expectation of Yi given that Zi equals the
particular value z”

Conditional expectations tell us how the average of one variable
changes as we move the conditioning variable over the values this
variable might take on

The collection of all such averages is called the conditional
expectation function (CEF)
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CEF for binary treatments

Suppose participants were randomly assigned to an experimental
condition Zi, such that

Zi = 0 if participants were assigned to the control condition

Zi = 1 if participants were assigned to the treatment condition

Suppose that we collected data for a dependent variable Yi

The CEF of Y given Z is the collection of two expectations:
E[Yi|Z = 0]

E[Yi|Z = 1]
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Example of a CEF for a binary treatment
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What if X is not binary?

Example of the CEF E[Yi|Xi] for a non-binary predictor variable X

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations 6



What if X is not binary?

Example of the CEF E[Yi|Xi] for a non-binary predictor variable X

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations 6



What if X is not binary?

Example of the CEF E[Yi|Xi] for a non-binary predictor variable X

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations 6



Estimating the population CEF

How do we estimate the population CEF E[Yi|Xi]?

Run regression on a random sample. What does this mean?

Concretely: find a way to estimate Ê[Yi|Xi]
Estimate all possible conditional averages

In experiments (where X is Z), two possible conditional averages: µ̂T

and µ̂C
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Regression: parameter, estimator, estimand

In regression, the CEF E[Yi|Xi] is (generally) the parameter that we
are interested in

For a given sample dataset, we obtain an estimate Ê[Yi|Xi] of the
parameter E[Yi|Xi]
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A note on CEFs involing more than one conditioning
variables

When the CEF involves k conditioning variables, we write:

E[Yi|X1i, ..., Xki]

These CEFs are more difficult to plot / visualize

Idea is the same, instead of looking at average value of Y
conditioning on treatment or income, we condition on
treatment/income and other variables such as gender, education, etc.

Let’s stick with the bivariate case for now
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The CEF is the best predictor of Y !

Suppose that we knew the full joint cumulative distribution (CDF) of
X and Y and then someone gave us a randomly drawn value of X

The CEF minimizes the Mean Squared Error (MSE)
MSE: average of the squares of the errors. i.e., the average squared
difference between the estimated values and the actual values
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The CEF is the best predictor of Y !

No better way (in terms of MSE) to approximate Y given X than the
CEF

True independently of the distribution of Y and X

This make the CEF a natural target of inquiry:
If the CEF is known, much is known about how X relates to Y
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Nonparametric regression
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Nonparametric regression

Nonparametric strategies make minimal assumption about the
functional form of the data generating process

Nonparametric regression does not impose a functional form on the
relationship between Y and X

i.e., Does not impose a shape on the CEF E[Y |X]
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Nonparametric regression

Works well as long as:
X is discrete

Small number of values of X

Small number of X variables

What if X is continuous?
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Nonparametric regression with continuous X

Let’s consider the data from a sociology paper:
Chirot, D. & Ragin, C. (1975). The market, tradition and peasant
rebellion: The case of Romania. American Sociological Review 40,
428-444

Peasant rebellions in Romanian counties in 1907

Peasants made up 80% of the population

About 60% of them owned no land, which was mostly concentrated
among large landowners

We’re interested in the CEF E[Y |X] in which
Y : intensity of the peasant rebellion

X: inequality of land tenure

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations 16



Nonparametric regression with continuous X

Let’s consider the data from a sociology paper:
Chirot, D. & Ragin, C. (1975). The market, tradition and peasant
rebellion: The case of Romania. American Sociological Review 40,
428-444

Peasant rebellions in Romanian counties in 1907

Peasants made up 80% of the population

About 60% of them owned no land, which was mostly concentrated
among large landowners

We’re interested in the CEF E[Y |X] in which
Y : intensity of the peasant rebellion

X: inequality of land tenure

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations 16



Nonparametric regression with continuous X

Let’s consider the data from a sociology paper:
Chirot, D. & Ragin, C. (1975). The market, tradition and peasant
rebellion: The case of Romania. American Sociological Review 40,
428-444

Peasant rebellions in Romanian counties in 1907

Peasants made up 80% of the population

About 60% of them owned no land, which was mostly concentrated
among large landowners

We’re interested in the CEF E[Y |X] in which
Y : intensity of the peasant rebellion

X: inequality of land tenure

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations 16



Nonparametric regression with continuous X
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Uniform Kernel Regression: Simple Local Averages

One approach is to use a moving local average to estimate E[Y |X]

Calculate the average of the observed y points that have x values in
the interval [x0 − h, x0 + h]

h = some positive number (called the bandwidth)

Uniform kernel: every observation in the interval is equally weighted

Uniform kernel regression: E[Y |X = x0]
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Kernel Regression: Simple Local Averages
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Kernel Regression: Simple Local Averages
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Changing the bandwidth
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Kernel Regression: Weighted Local Averages

Another approach is to construct weighted local averages

Data points that are closer to x0 get more weight than points farther
away

1 Decide on a symmetric kernel weight function Kh (e.g. Epanechnikov)

2 Compute weighted average of the observed y points that have x
values in the bandwidth interval [x0 − h, x0 + h]
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Kernel Regression: Weighted Local Averages
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Kernel Regression: Weighted Local Averages
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Kernel Regression: Weighted Local Averages
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Bias - Variance tradeoff

When choosing an estimator Ê[Y |X] for E[Y |X], we face a
bias-variance tradeoff

Notice that we can chose models with various levels of flexibility:
A very flexible estimator allows the shape of the function to vary
(e.g. a kernel regression with a small bandwidth)

A very inflexible estimator restricts the shape of the function to a
particular form (e.g. a kernel regression with a very wide bandwidth)
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Bias - Variance tradeoff

A less “flexible” estimator leads to more bias

A more “flexible” estimator leads to more variance

As the name suggests, this problem cannot be fixed

With lots of data points, we can “afford” to use a more flexible
estimator
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Regression and causality

Regression describes the CEF

Regression does not have magic powers to tell you whether X or Z
causes Y

That would be amazing

That is not the case

Under very specific assumptions, regression allows you to identify
causal relationships. These assumptions can be about:

The design of the study (e.g., experimental, random assignment)

The statistical model (more soon!)

. . . or both (more soon!)
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