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What is regression?

o Regression quantifies how an outcome variable Y varies, on average,
as a function of:

o One variable (e.g., treatment assignment Z, treatment D, a predictor
X)

o Or more than one variables (e.g. a series of predictors Xy, ..., X,,)
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What is regression?

o Regression quantifies how an outcome variable Y varies, on average,
as a function of:

o One variable (e.g., treatment assignment Z, treatment D, a predictor
X)

o Or more than one variables (e.g. a series of predictors Xy, ..., X,,)

o Let's focus on the bivariate case for now
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OK! Wait! What is regression again?

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations



OK! Wait! What is regression again?

o What is specific about regression in terms of quantifying the
relationship between two variables? For example, how is regression
different from correlation or covariance?
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OK! Wait! What is regression again?

o What is specific about regression in terms of quantifying the
relationship between two variables? For example, how is regression
different from correlation or covariance?

o Regression describes conditional expectations

o Example:
E[Y;|Z; = 4

o i.e., “the conditional expectation of Y; given that Z; equals the
particular value z"

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations



OK! Wait! What is regression again?

o What is specific about regression in terms of quantifying the
relationship between two variables? For example, how is regression
different from correlation or covariance?

o Regression describes conditional expectations
o Example:
E[Yi|Z; = 2]
o i.e., “the conditional expectation of Y; given that Z; equals the

particular value z"

o Conditional expectations tell us how the average of one variable
changes as we move the conditioning variable over the values this
variable might take on
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OK! Wait! What is regression again?

o What is specific about regression in terms of quantifying the
relationship between two variables? For example, how is regression
different from correlation or covariance?

o Regression describes conditional expectations

o Example:
E[Y;|Z; = 4

o i.e., “the conditional expectation of Y; given that Z; equals the
particular value z"

o Conditional expectations tell us how the average of one variable
changes as we move the conditioning variable over the values this
variable might take on

o The collection of all such averages is called the conditional
expectation function (CEF)
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CEF for binary treatments
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CEF for binary treatments

o Suppose participants were randomly assigned to an experimental
condition Z;, such that

o Z; = 0 if participants were assigned to the control condition

o Z; =1 if participants were assigned to the treatment condition
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o Suppose participants were randomly assigned to an experimental
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o Z; = 0 if participants were assigned to the control condition
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o Suppose that we collected data for a dependent variable Y;
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CEF for binary treatments

o Suppose participants were randomly assigned to an experimental
condition Z;, such that

o Z; = 0 if participants were assigned to the control condition

o Z; =1 if participants were assigned to the treatment condition
o Suppose that we collected data for a dependent variable Y;
o The CEF of Y given Z is the collection of two expectations:

o E[Y;|Z = 0]

o E[Y;|Z =1]
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Example of a CEF for a binary treatment
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What if X is not binary?
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o Example of the CEF E[Y;|X;] for a non-binary predictor variable X
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What if X is not binary?

o Example of the CEF E[Y;|X;] for a non-binary predictor variable X
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Estimating the population CEF

o How do we estimate the population CEF E[Y;| X;]?
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o How do we estimate the population CEF E[Y;| X;]?

o Run regression on a random sample.
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Estimating the population CEF

o How do we estimate the population CEF E[Y;| X;]?
o Run regression on a random sample. What does this mean?

o Concretely: find a way to estimate E[Y;|X;]
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Estimating the population CEF

o How do we estimate the population CEF E[Y;| X;]?
o Run regression on a random sample. What does this mean?

o Concretely: find a way to estimate E[Y;|X;]

o Estimate all possible conditional averages
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Estimating the population CEF

o How do we estimate the population CEF E[Y;| X;]?
o Run regression on a random sample. What does this mean?
o Concretely: find a way to estimate E[Y;|X;]

o Estimate all possible conditional averages

o In experiments (where X is Z), two possible conditional averages: fir
and jic
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Regression: parameter, estimator, estimand

o In regression, the CEF E[Y;|X;] is (generally) the parameter that we
are interested in
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Regression: parameter, estimator, estimand

o In regression, the CEF E[Y;|X;] is (generally) the parameter that we
are interested in

o For a given sample dataset, we obtain an estimate E[Y;|X;] of the
parameter E[Y;|X;]
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A note on CEFs involing more than one conditioning
variables

o When the CEF involves k conditioning variables, we write:

E[Y;| X1i, ooy Xpi)
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A note on CEFs involing more than one conditioning
variables

o When the CEF involves k conditioning variables, we write:
E[Y;| X1i, ooy Xpi)

o These CEFs are more difficult to plot / visualize
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A note on CEFs involing more than one conditioning
variables

o When the CEF involves k conditioning variables, we write:
E[Y;| X1i, ooy Xpi)

o These CEFs are more difficult to plot / visualize

o ldea is the same, instead of looking at average value of Y
conditioning on treatment or income, we condition on
treatment/income and other variables such as gender, education, etc.
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A note on CEFs involing more than one conditioning
variables

o When the CEF involves k conditioning variables, we write:
E[Y;| X1i, ooy Xpi)

o These CEFs are more difficult to plot / visualize

o ldea is the same, instead of looking at average value of Y
conditioning on treatment or income, we condition on
treatment/income and other variables such as gender, education, etc.

o Let's stick with the bivariate case for now
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The CEF is the best predictor of Y'!
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The CEF is the best predictor of Y'!

o Suppose that we knew the full joint cumulative distribution (CDF) of
X and Y and then someone gave us a randomly drawn value of X
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The CEF is the best predictor of Y'!

o Suppose that we knew the full joint cumulative distribution (CDF) of
X and Y and then someone gave us a randomly drawn value of X
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o The CEF minimizes the Mean Squared Error (MSE)

o MSE: average of the squares of the errors.
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The CEF is the best predictor of Y'!

o Suppose that we knew the full joint cumulative distribution (CDF) of
X and Y and then someone gave us a randomly drawn value of X
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o The CEF minimizes the Mean Squared Error (MSE)

o MSE: average of the squares of the errors. i.e., the average squared
difference between the estimated values and the actual values
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The CEF is the best predictor of Y'!

o No better way (in terms of MSE) to approximate Y given X than the
CEF
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o True independently of the distribution of Y and X
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The CEF is the best predictor of Y'!

o No better way (in terms of MSE) to approximate Y given X than the
CEF

o True independently of the distribution of Y and X

o This make the CEF a natural target of inquiry:
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The CEF is the best predictor of Y'!

o No better way (in terms of MSE) to approximate Y given X than the
CEF

o True independently of the distribution of Y and X

o This make the CEF a natural target of inquiry:

o If the CEF is known, much is known about how X relates to Y
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Nonparametric regression
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Nonparametric regression

o Nonparametric strategies make minimal assumption about the
functional form of the data generating process
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Nonparametric regression
o Nonparametric strategies make minimal assumption about the
functional form of the data generating process

o Nonparametric regression does not impose a functional form on the
relationship between Y and X

o i.e., Does not impose a shape on the CEF E[Y|X]
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Nonparametric regression

o Nonparametric strategies make minimal assumption about the
functional form of the data generating process

o Nonparametric regression does not impose a functional form on the
relationship between Y and X

o i.e., Does not impose a shape on the CEF E[Y|X]
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Nonparametric regression
o Nonparametric strategies make minimal assumption about the
functional form of the data generating process

o Nonparametric regression does not impose a functional form on the
relationship between Y and X

o i.e., Does not impose a shape on the CEF E[Y|X]
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Nonparametric regression

o Works well as long as:
o X is discrete
o Small number of values of X

o Small number of X variables
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Nonparametric regression

o Works well as long as:
o X is discrete
o Small number of values of X

o Small number of X variables

o What if X is continuous?
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Nonparametric regression with continuous X

o Let's consider the data from a sociology paper:

o Chirot, D. & Ragin, C. (1975). The market, tradition and peasant
rebellion: The case of Romania. American Sociological Review 40,
428-444

o Peasant rebellions in Romanian counties in 1907
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Nonparametric regression with continuous X

o Let's consider the data from a sociology paper:

o Chirot, D. & Ragin, C. (1975). The market, tradition and peasant
rebellion: The case of Romania. American Sociological Review 40,
428-444

o Peasant rebellions in Romanian counties in 1907
o Peasants made up 80% of the population

o About 60% of them owned no land, which was mostly concentrated
among large landowners
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Nonparametric regression with continuous X

o Let's consider the data from a sociology paper:

o Chirot, D. & Ragin, C. (1975). The market, tradition and peasant
rebellion: The case of Romania. American Sociological Review 40,
428-444

o Peasant rebellions in Romanian counties in 1907
o Peasants made up 80% of the population

o About 60% of them owned no land, which was mostly concentrated
among large landowners

o We're interested in the CEF E[Y'|X] in which
o Y intensity of the peasant rebellion

o X: inequality of land tenure
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Nonparametric regression with continuous X

o
< -
o o
P
[s]
[s]
N o
=
5
E T o
[s]
o 4 o
o
o o
[s]
o o o
T 04
o o
oo
o
o | © o ©
! T T T T T
03 04 05 06 07
inequality

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations

17



Uniform Kernel Regression: Simple Local Averages

o One approach is to use a moving local average to estimate E[Y|X]
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Uniform Kernel Regression: Simple Local Averages

o One approach is to use a moving local average to estimate E[Y|X]

o Calculate the average of the observed y points that have x values in
the interval [xg — h, xo + h]

o h = some positive number (called the bandwidth)
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Uniform Kernel Regression: Simple Local Averages

o One approach is to use a moving local average to estimate E[Y|X]

o Calculate the average of the observed y points that have x values in
the interval [xg — h, xo + h]

o h = some positive number (called the bandwidth)

©

Uniform kernel: every observation in the interval is equally weighted
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Uniform kernel regression: E[Y | X = z¢]
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Kernel Regression: Simple Local Averages

o
<+ -
o o
o
o
o
o o
= o
w
c
s -~ 4
£ o}
o
o | o
° o
o o o
- ) o )
T o
8o e
] o o
o o o X
[ T T [ T
0.3 0.4 0.5 0.6 0.7
inequality

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations

19



Kernel Regression: Simple Local Averages
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Kernel Regression: Simple Local Averages
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Kernel Regression: Simple Local Averages
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Changing the bandwidth
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Changing the bandwidth
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Changing the bandwidth
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Changing the
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Changing the bandwidth

intensity
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Kernel Regression: Weighted Local Averages

o Another approach is to construct weighted local averages

o Data points that are closer to xy get more weight than points farther
away
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Kernel Regression: Weighted Local Averages

o Another approach is to construct weighted local averages

o Data points that are closer to xy get more weight than points farther
away

@ Decide on a symmetric kernel weight function K}, (e.g. Epanechnikov)
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Kernel Regression: Weighted Local Averages

o Another approach is to construct weighted local averages

o Data points that are closer to xy get more weight than points farther
away

@ Decide on a symmetric kernel weight function K}, (e.g. Epanechnikov)
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@ Compute weighted average of the observed y points that have x
values in the bandwidth interval [xg — h, zg + h]

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations

27



Kernel Regression: Weighted Local Averages
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Kernel Regression: Weighted Local Averages
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Kernel Regression: Weighted Local Averages
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Kernel Regression: Weighted Local Averages
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Kernel Regression: Weighted Local Averages
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Kernel Regression: Weighted Local Averages
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Bias - Variance tradeoff
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Bias - Variance tradeoff

o When choosing an estimator E[Y|X] for E[Y'|X], we face a
bias-variance tradeoff

o Notice that we can chose models with various levels of flexibility:

Robin Gomila | PSY 503 | Lecture 15: Regression and Conditional Expectations

33



Bias - Variance tradeoff

o When choosing an estimator E[Y|X] for E[Y'|X], we face a
bias-variance tradeoff

o Notice that we can chose models with various levels of flexibility:

o A very flexible estimator allows the shape of the function to vary
(e.g. a kernel regression with a small bandwidth)
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Bias - Variance tradeoff

o When choosing an estimator E[Y|X] for E[Y'|X], we face a
bias-variance tradeoff

o Notice that we can chose models with various levels of flexibility:

o A very flexible estimator allows the shape of the function to vary
(e.g. a kernel regression with a small bandwidth)

o A very inflexible estimator restricts the shape of the function to a
particular form (e.g. a kernel regression with a very wide bandwidth)
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Bias - Variance tradeoff

o A less “flexible” estimator leads to more bias
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Bias - Variance tradeoff

o A less “flexible” estimator leads to more bias

o A more “flexible” estimator leads to more variance
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Bias - Variance tradeoff

o A less “flexible” estimator leads to more bias
o A more “flexible” estimator leads to more variance

o As the name suggests, this problem cannot be fixed
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Bias - Variance tradeoff

o A less “flexible” estimator leads to more bias
o A more “flexible” estimator leads to more variance
o As the name suggests, this problem cannot be fixed

o With lots of data points, we can "afford” to use a more flexible
estimator
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Regression and causality

o Regression describes the CEF
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Regression and causality

o Regression describes the CEF

o Regression does not have magic powers to tell you whether X or Z
causes Y

o That would be amazing

o That is not the case
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Regression and causality

o Regression describes the CEF

o Regression does not have magic powers to tell you whether X or Z
causes Y

o That would be amazing
o That is not the case

o Under very specific assumptions, regression allows you to identify
causal relationships. These assumptions can be about:

o The design of the study (e.g., experimental, random assignment)
o The statistical model (more soon!)

o ... or both (more soon!)
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