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Best Linear Predictor (BLP)
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Let’s explore a different parameter

So far, we have considered regression as a way to estimate the CEF

Although the CEF is the best predictor of Y given X, it can be
extremely complicated

Without further assumptions, the function can take any shape!

What if we defined a new and less complex parameter of the joint
distribution?

We could ask: among functions of the form: g(X) = a+ bX, which
function yields the best predictions of Y given X?
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The Best Linear Predictor (BLP)
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The Best Linear Predictor (BLP)

For random variables X and Y , there exist a best (minimum MSE) linear
predictor of Y given X such that g(X) = β0 + β1X

where β0 is the y-intercept of the BLP and β1 is its slope
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BLP and CEF

The BLP is the best linear approximation of the CEF

While the CEF might be infinitely complex, the BLP is characterized
by two numbers: β0 and β1

Importantly, the BLP is a simple approximation of the CEF that
operates on the same principle as the CEF: find the function that
minimizes MSE but with the further restriction that the function
must be linear

Robin Gomila | PSY 503 | Lecture 16: Linear Regression and the BLP 6



BLP and CEF

In psychological, social, and health science, the BLP very often (not
always!) approximate the CEF reasonably well (Aronow and Miller,
2019)

This is why psychologists often see correlation coefficients (which
assume linearity too!)

BLP as at least “a good first approximation”

So when CEF is not linear, you can still decide estimate the BLP if that
makes sense! Just don’t claim that the BLP is the CEF
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BLP and CEF

If the CEF is linear, then. . . the BLP is the CEF

This is the case EVERY TIME the predictor is BINARY

This implies that in experiments, the BLP is the CEF
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The experimental case
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The case of other binary predictors
This applies to any binary predictors! Let X be a binary predictor.
We have
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Linear regression
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What is linear regression?

Linear regression can be considered a method for estimating the
BLP of a joint distribution

In large enough samples and under some assumptions that we will
review, linear regression yields consistent and unbiased estimates β̂0
and β̂1 of parameters β0 and β1, corresponding to the intercept and
the slope of the BLP
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The meaning of linear regression coefficients

Let’s open R Studio!
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The meaning of linear regression coefficients

We have

E[Y |X] = β0 + β1X

where β0 is the estimated intercept or constant and β1 is the estimated
slope

Notice that the linear functional form imposes a constant slope

This matters for non-binary predictors with non-linear CEFs: Change
in E[Y |X] is the same at all values of X
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The meaning of linear regression coefficients
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The meaning of linear regression coefficients

Intercept: The average outcome among units with X = 0 is β0

E[Y |X = 0] = β0

Slope: A one-unit change in X is associated with a β1 change in Y

E[Y |X = x+ 1]− E[Y |X = x] = (β0 + β1(x+ 1)− (β0 + β1x)
= β0 + β1x+ β1 − β0 − β1x

= β1

(1)
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The meaning of regression coefficients for binary
treatment / predictor

Using Equation 1, it’s easy to see that when we regress Y on a binary
variable Z, then we have the following:

1 Intercept: β0 = E[Y |Z = 0]
2 Slope: average difference between Z = 1 group and Z = 0 group:
β1 = E[Y |Z = 1]− E[Y |Z = 0]

Thus, we can read off the difference in means between two groups as
the slope coefficient on a linear regression
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Standard errors in regression outputs

Standard errors calculated under the assumption that the variance of
the errors is homoskedastic!

Issue: Very often in our studies, variance of errors is heteroskedastic!

Let’s visualize heteroskedasticity
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Heteroskedasticity
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Heteroskedasticity
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Heteroskedasticity
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Heteroskedasticity: Issue and Solution

Problem: Heteroskedasticity may introduce bias in the standard errors
(NOT in the estimate of β)

This is an issue for hypothesis testing (p-values) and confidence
interval calculations

Solution: Use heteroskedasticity robust standard errors (!!)
Switching to robust SEs in R is trivial
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Robust SEs in R

Package estimatr was developed just for that!

Use lm_robust() function from that package in the same way as lm

Let’s do it together in R!
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Debates around Robust vs. Traditional SEs
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Debates around Robust vs. Traditional SEs

Most of the time, you will observe no difference between Robust and
Traditional SEs

My current take on this:
Design-based inference: Always use robust SEs

Statistical Modeling: Compare Robust and Traditional SEs.
Discrepancies, may indicate that your model is misspecified (more
soon)

If you’d like to read more:
Aronow, P. M. (2016). A Note on" How Robust Standard Errors
Expose Methodological Problems They Do Not Fix, and What to Do
About It"
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P-values in regression outputs

Linear regression outputs provide p-values for each estimated
coefficient β̂j

Keep in mind that p-values test against the null that βj = 0. This
implies that most often, the p-value associated with β0 will be very
small. That’s because the average outcome for control group will
rarely be 0.
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Combining Linear Regression with Nonparametric
Regression to Estimate the non-linear CEF
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LOESS

For non-linear CEFs, we can combine the kernel method idea of using
only local data with linear regression

Idea: fit a linear regression within each band

Locally weighted scatterplot smoothing (LOWESS or LOESS):
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LOESS

1 Pick a subset of the data that falls in the interval [x− h; x+ h]
2 Fit a line to this subset of the data (= local linear regression),

weighting the points by their distance to x using a kernel function
3 Use the fitted regression line to predict the expected value E[Y |X] for

each interval
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Weighted Local Linear Regressions
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Weighted Local Linear Regressions
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Weighted Local Linear Regressions
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Weighted Local Linear Regressions
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Least Squares
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Back up and review

CEF / regression function r(x) = E[Y |X] may or may not be linear

When the CEF is linear (e.g., experiments): Linear regression
estimates the CEF

When the CEF is not linear: Linear regression estimates the BLP,
which is the best linear approximation of the CEF

The functional form is a line:

r(x) = E[Y |X] = β0 + β1X

where β0 and β1 are population parameters, just like µ or σ2!

We need to estimate them using our sample. How?
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Simple linear regression model

Let’s write our model as:

Yi = r(Xi) + ui

= β0 + β1Xi + ui

Now, suppose we have some estimates of the slope, β1 and the
intercept, β0. Then the fitted or sample regression line is:

r̂(X) = β̂0 + β̂1X
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Fitted linear regression function
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Fitted linear regression function
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Definition: Fitted value

A fitted value or predicted value is the estimated conditional mean of Yi

for a particular observation with independent variable Xi

Ŷi = r̂(Xi) = β̂0 + β̂1Xi
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Definition: Residual

The residual is the difference between the actual value of Yi and the
predicted value, Ŷi:

ûi = Yi − Ŷi = Yi − β̂0 − β̂1Xi

Robin Gomila | PSY 503 | Lecture 16: Linear Regression and the BLP 40



Fitted linear regression function
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Fitted linear regression function
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Fitted linear regression function
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Fitted linear regression function
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Least Squares: Minimizing the residuals

The residuals tell us how well the line fits the data
Larger magnitude residuals means that points are very far from the line

Residuals close to 0 mean points very close to the line

The smaller the magnitude of the residuals, the better we are doing at
predicting Y

Choose the line that minimizes the residuals
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Which is better at minimizing residuals?
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