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What happens when the treatment was not randomly
assigned?

ÂTE is biased!

This week’s questions: What happens exactly? What can we do
about it?
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Meditation, stress, and coffee consumption

Suppose that the following experimental protocol was deployed on
many representative samples of U.S. students to test the effect of
meditation on stress

Treatment: Meditation (20 min on final exam day) vs. Placebo (e.g.,
taking a walk for 20 minute on final exam day)

DV: Students’ blood pressure before a test

Suppose that taken together these studies suggest that

ATE = −5mmHg
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Our plan to understand bias in non-experimental studies

1 Generate population potential outcomes in R
2 Generate a variable called coffee, which returns 1 for students who

consume more than 3 cups of coffee per day, 0 otherwise
This variable will be correlated with blood pressure

i.e., high coffee consumption associated correlated with high blood
pressure

3 Look at what happens if we don’t randomize and students self-select
into experimental conditions

We will assume that students who drink a lot of coffee self-select into
the control (no meditation) condition

4 Understand how regression “controls” / “adjustments” allow to
correct for bias
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Meditation, stress, and coffee consumption

Let’s open R Studio!

Robin Gomila | PSY 503 | Lecture 18: Regression and Causality in the Absence of Random Assignment 5



Adding covariates to a regression non-experimental
settings
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Why add variables to a regression in non-experimental
settings?

Basic definition and goal of regression for the bivariate case:
Estimate the CEF E[Y |X1]

Yi = β0 + β1Xi + ui

When we add a third variable X2 to the regression:
We estimate the relationship of two variables Y and X, conditional on
a third variable Z

Yi = β0 + β1Xi + β2Zi + ui

β’s are the population parameters that we want to estimate
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Why add variables to a regression in non-experimental
settings?

Causal inference when no random assignment
Block potential confounding, which are variables that are correlated
with both Y and X. Omtting these variables introduces bias in the
estimates of the causal effect of X on Y and often leads to incorrect
causal inferences

Relies on strong modeling assumptions! No way to know for sure what
the confounding variables are in real world settings!

Descriptive
Get a sense for the relationships in the data

Describe more precisely our quantity of interest

Predictive
We can usually make better predictions about the dependent variables
with more information on independent variables
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Why add variables to a regression in non-experimental
settings?

To understand further the basics of multiple regression, let’s forget
about causality for now and exclusively focus on prediction (&
description)

No random assignment and no causal inference in the following slides!

To understand the relevance of controlling for variables for description
/ prediction, let’s consider Simpson’s paradox
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Illustration: Simpson’s paradox

Overall a positive relationship between Y and X
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Illustration: Simpson’s paradox

Overall a positive relationship between Y and X

But within levels of Zi, the opposite
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Simpson’s paradox: Example

Cochran (1968) sought to compare cigarette to cigar smoking. He
found that cigar smokers had higher mortality rates than cigarette
smokers, but at any age level, cigarette smokers had higher mortality
than cigar smokers.

Instance of a more general problem called the ecological inference
fallacy
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Regression with Two Explanatory Variables

Suppose we are interested in the relationship between income and
one’s propensity to donate to a charity

Variables of interest
Y : Measure of donation in the past year

X1: Measure of income

X2: Children

With one predictor, we ask: Does income (X1) predict or explain
donation (Y )?

With two predictors, we ask questions like: Does income (X1) predict
or explain donation (Y ), once we “control” for children (X2)?

Let’s explore what is meant by controlling for another variable with
linear regression
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Simple regression of Donation on Income
Let’s look at the bivariate regression of donation on income

Ŷ = β̂0 + β̂1X1
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Simple regression of Donation on Income

We observe:

̂Donation = −1.26 + 1.6 income

Interpretation: A one point increase in income is associated with a 1.6
point increase in donation

But we can use more information in our prediction equation
For example, some observations come from individuals who have
children whereas others come from individuals who do not have children

And it may be the case that these individuals have different levels of
donation
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Simple regression of Donation on Income
Individuals with children (in red) tend donate more
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Simple regression of Donation on Income
Individuals with children (in red) tend donate more

Individuals without children (in blue) tend donate less
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Adding a covariate

Ŷ = β̂0 + β̂1X1 + β̂2X2

This implies that we want to predict Y using the information we have
about X1 and X2

In words:

̂Donation = β̂0 + β̂1income+ β̂2children
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Interpreting a binary covariate
Let X2i indicate whether individual i has children

When X2 = 0, the model becomes:

Ŷ = β̂0 + β̂1X1 + β̂20
= β̂0 + β̂1X1

When X2 = 1, the model becomes:

Ŷ = β̂0 + β̂1X1 + β̂21
= (β̂0 + β̂2) + β̂1X1

What does this mean? We are fitting two lines with the same slope
but different intercepts
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Regression of donation on income and children

Suppose multiple regression model provides estimates β̂0, β̂1, and β̂2
such that:

β̂0 = −1.5060

β̂1 = 1.7059

β̂2 = 0.58
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Regression of donation on income and children
Individuals without children:

Ŷ = β̂0 + β̂1X1

Ŷ = −1.5 + 1.7X1
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Regression of donation on income and children
Individuals with children:

Ŷ = (β̂0 + β̂2) + β̂1X1

Ŷ = −.92 + 1.7X1
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Regression of donation on income and children

Our prediction equation is: Ŷ = −1.5 + 1.7X1 + .58X2

Where do these quantities appear on the graph?
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Regression of donation on income and children
Our prediction equation is: Ŷ = −1.5 + 1.7X1 + .58X2

β̂0 = −1.5 is the intercept for the prediction line for individuals without
children
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Regression of donation on income and children

Our prediction equation is: Ŷ = −1.5 + 1.7X1 + .58X2

β̂1 = 1.7 is the slope for both lines
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Regression of donation on income and children
Our prediction equation is: Ŷ = −1.5 + 1.7X1 + .58X2

β̂2 = .58 is the vertical distance between two lines for individuals with
and without children
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Omitted variable bias

In observational studies, causal claims about the relationship between
two variables Y and X1 can be made if we assume that confounding
variables are “controlled for”

Confounding variables are variables correlated with both Y and X1

Not controlling for confounding variables introduces a specific type of
bias in the coefficient of interest

. . . called omitted variable bias!
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Omitted variable bias

For one confounder X2:

In observational datasets, omitted variable bias is often generated by
more than one variable. In this more general case, the direction of the
bias is more difficult to discern. It depends on all the pairwise
correlations.
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