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Heterogeneity

So far, we have considered cases in which β1 was constant across
subgroups

What happens if it’s not?

Let’s open R Studio!
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Why interaction terms?

Interaction terms will allow you to let the slope on one variable vary
as a function of another variable

Let’s explore a different hypothetical dataset describing the
relationship between income and donations conditional on having
children
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Let’s see the data

Does it look like there’s heterogeneity?

What happens if we simply
control for “parents” additively?
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Controlling for “parent” additively

The regression is a poor fit for non-parents. Can we allow for different
slopes for each group?
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Interactions with a binary variable

Let X2 be binary

In this case, X2 = 1 for parents

We can add another covariate to the baseline model that allows the
effect of income to vary by parental status

This covariate is called an interaction term and it is the product of
the two marginal variables of interest: income× parent

Here is the model with the interaction term:

Ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X1X2

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments 6



Interactions with a binary variable

Let X2 be binary

In this case, X2 = 1 for parents

We can add another covariate to the baseline model that allows the
effect of income to vary by parental status

This covariate is called an interaction term and it is the product of
the two marginal variables of interest: income× parent

Here is the model with the interaction term:
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Two lines in one regression

Ŷi = β̂0 + β̂1X1i + β̂2X2i + β̂3X1iX2i

How can we interpret this model?

We can plug in the two possible values of
X2i

When X2i
= 0:

Ŷi = β̂0 + β̂1X1i
+ β̂2X2i

+ β̂3X1i
X2i

= β̂0 + β̂1X1i
+ β̂2 × 0 + β̂3X1i

× 0

= β̂0 + β̂1X1i

When X2i = 1:

Ŷi = β̂0 + β̂1X1i
+ β̂2X2i

+ β̂3X1i
X2i

= β̂0 + β̂1X1i
+ β̂2 × 1 + β̂3X1i

× 1

= (β̂0 + β̂2) + (β̂1 + β̂3)X1i
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Example interpretation of the coefficients
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General interpretation of the coefficients

β̂0: average value of Yi when both X1i and X2i are equal to 0

β̂1: a one-unit change in X1i is associated with a β̂1-unit change in
Yi when X2i = 0

β̂2: average difference in Yi between X2i = 1 group and X2i = 0
group when X1i = 0

β̂3: change in the effect of X1i on Yi between X2i = 1 group and
X2i = 0 group
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Lower order terms

Principle of Marginality: Always include the lower order terms!

Imagine that we ommitted the lower order term:
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Omitting lower order terms

Ŷi = β̂0 + β̂1X1i + 0 ×X2i + β̂3X1iX2i

This model does not allow for a difference between parents and
non-parents when income is 0

This distorts slope estimates

Very rarely justified

Yet, for some reasons, people do it. . .

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments 11



Omitting lower order terms
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A note on interactions with non-binary discrete and
continuous variables

Same principle!

Plug in values in the equation to get the marginal effect of X1i

conditional on specific values of Xi2
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Summary for interactions

Do not omit lower order terms because it usually imposes unrealistic
restrictions

Do not interpret the coefficients on the lower order terms as marginal
effects

They give the marginal effect only for the case where the other variable
is equal to zero

The p-value on the interaction term can be used as a test against the
null of no interaction, but significant tests for the lower order term
rarely make sense
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Polynomials
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Polynomial terms
Polynomial terms are a special case of the continuous variable
interactions

where X1 = X2

Ŷi = β̂0 + β̂1X1i + β̂2X1i + β̂3X1iX1i

= β̂0 + (β̂1 + β̂2)X1i + β̂3X1iX1i

= β̂0 + (β̂1 + β̂2)X1i + β̂3X
2
1i

This is called a second order polynomial in X1, which we generally
write:

Yi = β0 + β1Xi + β2X
2
i + ui

A third order polynomial is given by:
Yi = β0 + β1Xi + β2X

2
i + β3X

3
i + ui
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Polynomial example: Income and Age
Classic example of a non-linear relationship between two variables:
income and age

Here we can see that simple linear regression does not seem to fit the
data
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Polynomial example: Income and Age
A second order polynomial in age fits the data a lot better:

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments 17



Higher order polynomials
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Covariate Adjustments in Experimental Designs
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Why include PRETREATMENT covariates in
experimental data analysis?

In experiments: Regression analysis with and without
PRETREATMENT covariate adjustments is unbiased!

Random assignment to conditions creates two groups that are, in
expectation, identical prior to treatment. This implies pretreatment
covariates are not correlated with the treatment

So why adjust for covariates? Controlling for pretreatment covariates:
Increases precision

Increases statistical power

Make sure to pre-register your model!
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Including covariates in regression analysis

Let’s open R studio!
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Any drawbacks to adjusting for pretreatment covariates?

In small sample (n < 20): Including pretreatment covariates
introduces bias in the estimate of the ATE

In larger samples (n > 20): Bias becomes negligible

If you are going to include more than one pretreatment covariates,
make sure sample is large enough!

How? Use Monte-Carlo simulation. . .
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Including covariates in regression analysis

Key assumption:

Covariates are unaffected by treatment assignment
i.e., the schedule of covariates is FIXED regardless of whether an
individual was assigned to treatment vs. control condition

IMPLICATION: DO NOT adjust for posttreatment covariates!
It will bias ATE

It will turn your experimental study into a correlational study

It will not allow you to make any causal claims
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What is a posttreatment covariate?

Any variables that: were measured after the treatment / may be
affected by the treatment
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Why you SHOULD NOT adjust for posttreatment
covariate?

Adjusting for posttreatment covariates introduces bias in your
estimate of the average treatment effect, even if treatment was
randomly assigned to participants

That is because variables that are affected by treatment cannot
possibly be independent of treatment assignment

Pervasive issue in social psychology —so called mediation analysis!
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Why you SHOULD NOT adjust for posttreatment
covariate?

Back to R Studio!

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments 26


