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Heterogeneity

o So far, we have considered cases in which 81 was constant across
subgroups

o What happens if it's not?

o Let's open R Studio!
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Why interaction terms?

o Interaction terms will allow you to let the slope on one variable vary
as a function of another variable
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Why interaction terms?

o Interaction terms will allow you to let the slope on one variable vary
as a function of another variable

o Let's explore a different hypothetical dataset describing the
relationship between income and donations conditional on having
children
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Let’s see the data

7 1 ® ooa» o
®0 %p L 0000
6 - e® Y ®e
*® .'.. :‘0 * o ° Parents
A T N
°
% 4 ® ‘..‘ - ‘. ° S
= tH o« 0% o
S L °
a 34 @ e ® o @® o ° ° ® o
o) o ... 1) ®
e o o e o A
27 o ® o °
® o ° Not parents
1 - e® % ee® ) [ea)
I ) T L] T 1
2.0 25 3.0 35 4.0 4.5
Income

o Does it look like there's heterogeneity?
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Let’s see the data
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o Does it look like there's heterogeneity? What happens if we simply
control for “parents” additively?
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Controlling for “parent” additively

Donation

Not parents

2.0 2.5 3.0 35 4.0 4.5

o The regression is a poor fit for non-parents. Can we allow for different
slopes for each group?
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Interactions with a binary variable

o Let X5 be binary
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Interactions with a binary variable

o Let X5 be binary

o In this case, X9 =1 for parents
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Interactions with a binary variable

o Let Xy be binary
o In this case, X9 =1 for parents

o We can add another covariate to the baseline model that allows the
effect of income to vary by parental status

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments



Interactions with a binary variable

o Let Xy be binary
o In this case, X9 =1 for parents

o We can add another covariate to the baseline model that allows the
effect of income to vary by parental status

o This covariate is called an interaction term and it is the product of
the two marginal variables of interest: income x parent
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Interactions with a binary variable

Let X5 be binary

©

In this case, X5 = 1 for parents

©

We can add another covariate to the baseline model that allows the
effect of income to vary by parental status

©

This covariate is called an interaction term and it is the product of
the two marginal variables of interest: income x parent

(+]

Here is the model with the interaction term:

©

Y = Bo+ i X1 + BaXo + B3 X1 X
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Two lines in one regression

Yi=fo+ 31X1Z- + B2X2i + §3X1iX2i

@ How can we interpret this model?
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Two lines in one regression

Yi=fo+ 31X1Z- + B2X2i + §3X1iX2i

@ How can we interpret this model? We can plug in the two possible values of
Xoi
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Two lines in one regression

Yi=fo+ 31X1i + B2X2i + §3X1iX2i

@ How can we interpret this model? We can plug in the two possible values of
Xoi

o When Xy, = 0:

Y, = Bo + §1X1i + BzXzi + §3X1ix2i
230+§1X11+32 ><0+33X1i x 0
= Bo JrBlei
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Two lines in one regression

Yi=fo+ 31X1i + B2X2i + §3X1iX2i

@ How can we interpret this model? We can plug in the two possible values of
Xoi

o When Xy, = 0:

Y, = Bo + §1X1i + BzXzi + §3X1ix2i
= Bo + B X1, + B2 x 0+ B3 X1, x 0
= o +B\1X1i
o When X, = 1:
Y, = Bo + BiXy, + BaXo, + B3 X1, Xo,
= Bo+ BiX1, + Ba x 1+ B3 Xy, x 1
= (Bo + B2) + (B + B3) X1,
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Example interpretation of the coefficients

‘ Intercept for X3;  Slope for Xy

X2i =0 S b1
X9 =1)| Bo + B2 B1+ B3

Donation

Income
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General interpretation of the coefficients

) BO: average value of Y; when both X, and X3, are equal to 0
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General interpretation of the coefficients

) BO: average value of Y; when both X, and X3, are equal to 0

o 31: a one-unit change in Xj, is associated with a Bl—unit change in
Y; when Xo, =0
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General interpretation of the coefficients

) BO: average value of Y; when both X, and X3, are equal to 0

o 31: a one-unit change in Xj, is associated with a Bl—unit change in
Y; when Xo, =0

° 32: average difference in Y; between X5, =1 group and Xy, =0
group when X, =0
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General interpretation of the coefficients

) BO: average value of Y; when both X, and X3, are equal to 0

o 31: a one-unit change in Xj, is associated with a Bl—unit change in
Y; when Xo, =0

° 32: average difference in Y; between X5, =1 group and Xy, =0
group when X, =0

° Bg: change in the effect of X, on Y; between X9, =1 group and
Xg, = 0 group
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Lower order terms

o Principle of Marginality: Always include the lower order terms!

o Imagine that we ommitted the lower order term:
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Lower order terms

o Principle of Marginality: Always include the lower order terms!

o Imagine that we ommitted the lower order term:

Donation
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Omitting lower order terms

Y = fo + BiX1, +0 x Xy, + B3X1, Xo,
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Omitting lower order terms

Yi =50+ BIXL; +0x X2i + 53X1iX2i
o This model does not allow for a difference between parents and
non-parents when income is 0
o This distorts slope estimates
o Very rarely justified

o Yet, for some reasons, people do it. ..
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A note on interactions with non-binary discrete and
continuous variables

o Same principle!

o Plug in values in the equation to get the marginal effect of Xj,
conditional on specific values of X,
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Summary for interactions

o Do not omit lower order terms because it usually imposes unrealistic
restrictions
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Summary for interactions

o Do not omit lower order terms because it usually imposes unrealistic
restrictions

o Do not interpret the coefficients on the lower order terms as marginal
effects

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

13



Summary for interactions

o Do not omit lower order terms because it usually imposes unrealistic
restrictions

o Do not interpret the coefficients on the lower order terms as marginal
effects

o They give the marginal effect only for the case where the other variable
is equal to zero
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Summary for interactions

o Do not omit lower order terms because it usually imposes unrealistic
restrictions

o Do not interpret the coefficients on the lower order terms as marginal
effects

o They give the marginal effect only for the case where the other variable
is equal to zero

o The p-value on the interaction term can be used as a test against the
null of no interaction, but significant tests for the lower order term
rarely make sense

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments 13



Polynomials
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Polynomial terms

o Polynomial terms are a special case of the continuous variable
interactions

o where X1 = X2
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Polynomial terms

o Polynomial terms are a special case of the continuous variable
interactions

o where X1 = X

= Bo+ (B1 + B2) X1, + B3 X1, X,
= Bo + (B1 + B2) X1, + B3 X%,
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Polynomial terms

o Polynomial terms are a special case of the continuous variable
interactions

o where X1 = X2
Y = Bo + B Xy, + BoXa, + BaX1, X,
= Bo+ (B1 + B2) X1, + B3 X1, X,
= Bo + (B1 + B2) X1, + B3 X%,

o This is called a second order polynomial in X7, which we generally
write:

Y; = Bo + Bi1Xi + BoXP +u
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Polynomial terms

o Polynomial terms are a special case of the continuous variable
interactions

o where X1 = X2
Y = Bo + B Xy, + BoXa, + BaX1, X,
= Bo+ (B1 + B2) X1, + B3 X1, X,
= Bo + (B1 + B2) X1, + B3 X%,

o This is called a second order polynomial in X7, which we generally
write:

Y; = Bo + Bi1Xi + BoXP +u

o A third order polynomial is given by:
Yi = Bo+ b1Xi + BoXP + B3 X} + u;
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Polynomial example: Income and Age

o Classic example of a non-linear relationship between two variables:
income and age
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Polynomial example: Income and Age

o Classic example of a non-linear relationship between two variables:
income and age

o Here we can see that simple linear regression does not seem to fit the
data
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Polynomial example: Income and Age

o A second order polynomial in age fits the data a lot better:
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Higher order polynomials
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Covariate Adjustments in Experimental Designs
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Why include PRETREATMENT covariates in
experimental data analysis?

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

20



Why include PRETREATMENT covariates in
experimental data analysis?

o In experiments: Regression analysis with and without
PRETREATMENT covariate adjustments is unbiased!

o Random assignment to conditions creates two groups that are, in
expectation, identical prior to treatment. This implies pretreatment
covariates are not correlated with the treatment
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expectation, identical prior to treatment. This implies pretreatment
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o So why adjust for covariates?

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

20



Why include PRETREATMENT covariates in
experimental data analysis?

o In experiments: Regression analysis with and without
PRETREATMENT covariate adjustments is unbiased!

o Random assignment to conditions creates two groups that are, in
expectation, identical prior to treatment. This implies pretreatment
covariates are not correlated with the treatment

o So why adjust for covariates? Controlling for pretreatment covariates:
o Increases precision

o Increases statistical power
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Why include PRETREATMENT covariates in
experimental data analysis?

o In experiments: Regression analysis with and without
PRETREATMENT covariate adjustments is unbiased!

o Random assignment to conditions creates two groups that are, in
expectation, identical prior to treatment. This implies pretreatment
covariates are not correlated with the treatment

o So why adjust for covariates? Controlling for pretreatment covariates:
o Increases precision

o Increases statistical power

o Make sure to pre-register your model!
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Including covariates in regression analysis

Let’'s open R studio!
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Any drawbacks to adjusting for pretreatment covariates?
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Any drawbacks to adjusting for pretreatment covariates?

o In small sample (n < 20): Including pretreatment covariates
introduces bias in the estimate of the ATE
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Any drawbacks to adjusting for pretreatment covariates?

o In small sample (n < 20): Including pretreatment covariates
introduces bias in the estimate of the ATE

o In larger samples (n > 20): Bias becomes negligible
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Any drawbacks to adjusting for pretreatment covariates?

o In small sample (n < 20): Including pretreatment covariates
introduces bias in the estimate of the ATE

o In larger samples (n > 20): Bias becomes negligible

o If you are going to include more than one pretreatment covariates,
make sure sample is large enough!
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Any drawbacks to adjusting for pretreatment covariates?

o In small sample (n < 20): Including pretreatment covariates
introduces bias in the estimate of the ATE

o In larger samples (n > 20): Bias becomes negligible

o If you are going to include more than one pretreatment covariates,
make sure sample is large enough!

o How? Use Monte-Carlo simulation. . .
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Including covariates in regression analysis

o Key assumption:
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Including covariates in regression analysis

o Key assumption: Covariates are unaffected by treatment assignment

o i.e., the schedule of covariates is FIXED regardless of whether an
individual was assigned to treatment vs. control condition
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Including covariates in regression analysis

o Key assumption: Covariates are unaffected by treatment assignment

o i.e., the schedule of covariates is FIXED regardless of whether an
individual was assigned to treatment vs. control condition

o IMPLICATION: DO NOT adjust for posttreatment covariates!
o It will bias ATE
o It will turn your experimental study into a correlational study

o It will not allow you to make any causal claims
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What is a posttreatment covariate?

o Any variables that: were measured after the treatment / may be
affected by the treatment
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Why you SHOULD NOT adjust for posttreatment
covariate?

o Adjusting for posttreatment covariates introduces bias in your
estimate of the average treatment effect, even if treatment was
randomly assigned to participants

o That is because variables that are affected by treatment cannot
possibly be independent of treatment assignment

o Pervasive issue in social psychology —so called mediation analysis!

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments 25



Why you SHOULD NOT adjust for posttreatment
covariate?

Back to R Studio!
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