PSY 503: Foundations of Psychological Methods Lecture 19: Heterogeneity and Experimental Regression Adjustments

Robin Gomila

Princeton

November 11, 2020

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

 $\bullet\,$ So far, we have considered cases in which β_1 was constant across subgroups

- $\bullet\,$ So far, we have considered cases in which β_1 was constant across subgroups
- What happens if it's not?

- $\bullet\,$ So far, we have considered cases in which β_1 was constant across subgroups
- What happens if it's not?
- Let's open R Studio!

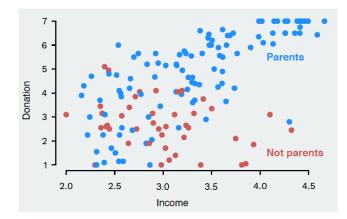
Why interaction terms?

• Interaction terms will allow you to let the **slope** on one variable vary as a function of another variable

Why interaction terms?

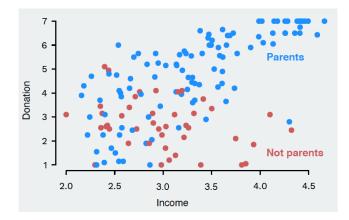
- Interaction terms will allow you to let the slope on one variable vary as a function of another variable
- Let's explore a different hypothetical dataset describing the relationship between income and donations conditional on having children

Let's see the data



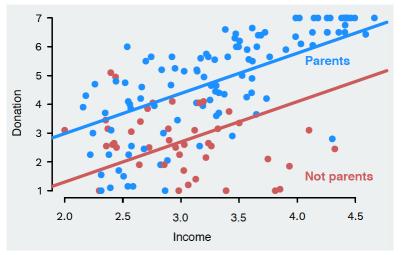
• Does it look like there's heterogeneity?

Let's see the data



• Does it look like there's heterogeneity? What happens if we simply control for "parents" additively?

Controlling for "parent" additively



• The regression is a poor fit for non-parents. Can we allow for different slopes for each group?

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

• Let X_2 be binary

- Let X_2 be binary
- In this case, $X_2 = 1$ for parents

- Let X_2 be binary
- In this case, $X_2 = 1$ for parents
- We can add another covariate to the baseline model that allows the effect of income to vary by parental status

- Let X₂ be binary
- In this case, $X_2 = 1$ for parents
- We can add another covariate to the baseline model that allows the effect of income to vary by parental status
- This covariate is called an interaction term and it is the product of the two marginal variables of interest: *income* × *parent*

- Let X₂ be binary
- In this case, $X_2 = 1$ for parents
- We can add another covariate to the baseline model that allows the effect of income to vary by parental status
- This covariate is called an interaction term and it is the product of the two marginal variables of interest: *income* × *parent*
- Here is the model with the interaction term:

$$\widehat{Y} = \widehat{\beta}_0 + \widehat{\beta}_1 X_1 + \widehat{\beta}_2 X_2 + \widehat{\beta}_3 X_1 X_2$$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i}$$

• How can we interpret this model?

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i}$$

 ${\ensuremath{\, \bullet \, }}$ How can we interpret this model? We can plug in the two possible values of X_{2i}

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i}$$

- $\bullet\,$ How can we interpret this model? We can plug in the two possible values of X_{2i}
- When $X_{2_i} = 0$:

$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i} \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_{1_i} \times 0 \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} \end{split}$$

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i}$$

- $\bullet\,$ How can we interpret this model? We can plug in the two possible values of X_{2i}
- When $X_{2_i} = 0$:

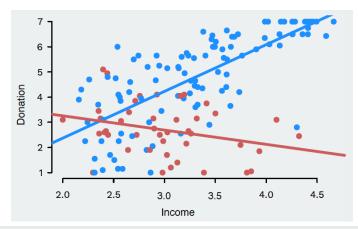
$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i} \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 \times 0 + \widehat{\beta}_3 X_{1_i} \times 0 \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} \end{split}$$

• When $X_{2_i} = 1$:

$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i} \\ &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 \times 1 + \widehat{\beta}_3 X_{1_i} \times 1 \\ &= (\widehat{\beta}_0 + \widehat{\beta}_2) + (\widehat{\beta}_1 + \widehat{\beta}_3) X_{1_i} \end{split}$$

Example interpretation of the coefficients

	Intercept for X_{2i}	Slope for X_{2i}
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{\widehat{\beta}_0}{\widehat{\beta}_0 + \widehat{\beta}_2}$	$\widehat{\beta}_1$ $\widehat{\beta}_1 + \widehat{\beta}_3$
$X_{2i}=1$	$\widehat{\beta}_0 + \widehat{\beta}_2$	$\widehat{\beta}_1 + \widehat{\beta}_3$



Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

• $\widehat{\beta}_0$: average value of Y_i when both X_{1_i} and X_{2_i} are equal to 0

- $\widehat{\beta}_0$: average value of Y_i when both X_{1_i} and X_{2_i} are equal to 0
- $\widehat{\beta}_1:$ a one-unit change in X_{1_i} is associated with a $\widehat{\beta}_1\text{-unit}$ change in Y_i when $X_{2_i}=0$

- $\widehat{\beta}_0$: average value of Y_i when both X_{1_i} and X_{2_i} are equal to 0
- $\widehat{\beta}_1:$ a one-unit change in X_{1_i} is associated with a $\widehat{\beta}_1\text{-unit}$ change in Y_i when $X_{2_i}=0$
- $\hat{\beta}_2$: average difference in Y_i between $X_{2_i} = 1$ group and $X_{2_i} = 0$ group when $X_{1_i} = 0$

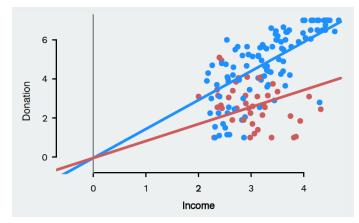
- $\widehat{\beta}_0$: average value of Y_i when both X_{1_i} and X_{2_i} are equal to 0
- $\widehat{\beta}_1:$ a one-unit change in X_{1_i} is associated with a $\widehat{\beta}_1\text{-unit}$ change in Y_i when $X_{2_i}=0$
- $\hat{\beta}_2$: average difference in Y_i between $X_{2_i} = 1$ group and $X_{2_i} = 0$ group when $X_{1_i} = 0$
- $\widehat{\beta}_3:$ change in the effect of X_{1_i} on Y_i between $X_{2_i}=1$ group and $X_{2_i}=0$ group

Lower order terms

- Principle of Marginality: Always include the lower order terms!
- Imagine that we ommitted the lower order term:

Lower order terms

- Principle of Marginality: Always include the lower order terms!
- Imagine that we ommitted the lower order term:



Omitting lower order terms

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + 0 \times X_{2i} + \widehat{\beta}_3 X_{1i} X_{2i}$$

Omitting lower order terms

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + 0 \times X_{2_i} + \widehat{\beta}_3 X_{1_i} X_{2_i}$$

- This model does not allow for a difference between parents and non-parents when income is 0
 - This distorts slope estimates
 - Very rarely justified
 - Yet, for some reasons, people do it...

A note on interactions with non-binary discrete and continuous variables

- Same principle!
- Plug in values in the equation to get the marginal effect of X_{1_i} conditional on specific values of X_{i_2}

• Do not omit lower order terms because it usually imposes unrealistic restrictions

- Do not omit lower order terms because it usually imposes unrealistic restrictions
- Do not interpret the coefficients on the lower order terms as marginal effects

- Do not omit lower order terms because it usually imposes unrealistic restrictions
- Do not interpret the coefficients on the lower order terms as marginal effects
 - They give the marginal effect only for the case where the other variable is equal to zero

- Do not omit lower order terms because it usually imposes unrealistic restrictions
- Do not interpret the coefficients on the lower order terms as marginal effects
 - They give the marginal effect only for the case where the other variable is equal to zero
- The p-value on the interaction term can be used as a test against the null of no interaction, but significant tests for the lower order term rarely make sense

Polynomials

Polynomial terms

Polynomial terms are a special case of the continuous variable interactions

• where $X_1 = X_2$

Polynomial terms

Polynomial terms are a special case of the continuous variable interactions

• where
$$X_1 = X_2$$

$$\begin{aligned} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + \widehat{\beta}_2 X_{1i} + \widehat{\beta}_3 X_{1i} X_{1i} \\ &= \widehat{\beta}_0 + (\widehat{\beta}_1 + \widehat{\beta}_2) X_{1i} + \widehat{\beta}_3 X_{1i} X_{1i} \\ &= \widehat{\beta}_0 + (\widehat{\beta}_1 + \widehat{\beta}_2) X_{1i} + \widehat{\beta}_3 X_{1i}^2 \end{aligned}$$

Polynomial terms

Polynomial terms are a special case of the continuous variable interactions

• where
$$X_1 = X_2$$

$$\begin{split} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{1_i} + \widehat{\beta}_3 X_{1_i} X_{1_i} \\ &= \widehat{\beta}_0 + (\widehat{\beta}_1 + \widehat{\beta}_2) X_{1_i} + \widehat{\beta}_3 X_{1_i} X_{1_i} \\ &= \widehat{\beta}_0 + (\widehat{\beta}_1 + \widehat{\beta}_2) X_{1_i} + \widehat{\beta}_3 X_{1_i}^2 \end{split}$$

• This is called a **second order polynomial** in X₁, which we generally write:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

Polynomial terms

Polynomial terms are a special case of the continuous variable interactions

• where
$$X_1 = X_2$$

$$\begin{aligned} \widehat{Y}_i &= \widehat{\beta}_0 + \widehat{\beta}_1 X_{1_i} + \widehat{\beta}_2 X_{1_i} + \widehat{\beta}_3 X_{1_i} X_{1_i} \\ &= \widehat{\beta}_0 + (\widehat{\beta}_1 + \widehat{\beta}_2) X_{1_i} + \widehat{\beta}_3 X_{1_i} X_{1_i} \\ &= \widehat{\beta}_0 + (\widehat{\beta}_1 + \widehat{\beta}_2) X_{1_i} + \widehat{\beta}_3 X_{1_i}^2 \end{aligned}$$

• This is called a **second order polynomial** in X₁, which we generally write:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

• A third order polynomial is given by: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + u_i$

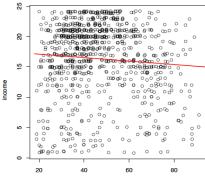
Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

Polynomial example: Income and Age

• Classic example of a non-linear relationship between two variables: income and age

Polynomial example: Income and Age

- Classic example of a non-linear relationship between two variables: income and age
- Here we can see that simple linear regression does not seem to fit the data

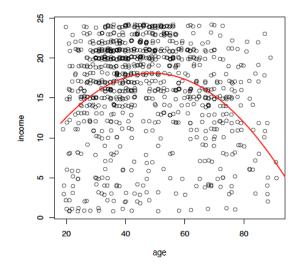


age

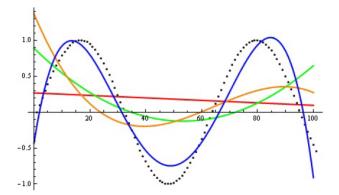
Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments

Polynomial example: Income and Age

• A second order polynomial in age fits the data a lot better:



Higher order polynomials



Covariate Adjustments in Experimental Designs

- In experiments: Regression analysis with and without PRETREATMENT covariate adjustments is unbiased!
 - Random assignment to conditions creates two groups that are, in expectation, identical prior to treatment. This implies pretreatment covariates are not correlated with the treatment

- In experiments: Regression analysis with and without PRETREATMENT covariate adjustments is unbiased!
 - Random assignment to conditions creates two groups that are, in expectation, identical prior to treatment. This implies pretreatment covariates are not correlated with the treatment
- So why adjust for covariates?

- In experiments: Regression analysis with and without PRETREATMENT covariate adjustments is unbiased!
 - Random assignment to conditions creates two groups that are, in expectation, identical prior to treatment. This implies pretreatment covariates are not correlated with the treatment
- So why adjust for covariates? Controlling for pretreatment covariates:
 - Increases precision
 - Increases statistical power

- In experiments: Regression analysis with and without PRETREATMENT covariate adjustments is unbiased!
 - Random assignment to conditions creates two groups that are, in expectation, identical prior to treatment. This implies pretreatment covariates are not correlated with the treatment
- So why adjust for covariates? Controlling for pretreatment covariates:
 - Increases precision
 - Increases statistical power
- Make sure to pre-register your model!

Let's open R studio!

 $\bullet\,$ In small sample (n < 20): Including pretreatment covariates introduces bias in the estimate of the ATE

- $\bullet\,$ In small sample (n < 20): Including pretreatment covariates introduces bias in the estimate of the ATE
- In larger samples (n > 20): Bias becomes negligible

- In small sample (n < 20): Including pretreatment covariates introduces bias in the estimate of the ATE
- In larger samples (n > 20): Bias becomes negligible
- If you are going to include more than one pretreatment covariates, make sure sample is large enough!

- In small sample (n < 20): Including pretreatment covariates introduces bias in the estimate of the ATE
- In larger samples (n > 20): Bias becomes negligible
- If you are going to include more than one pretreatment covariates, make sure sample is large enough!
 - How? Use Monte-Carlo simulation...

• Key assumption:

- Key assumption: Covariates are unaffected by treatment assignment
 - i.e., the schedule of covariates is FIXED regardless of whether an individual was assigned to treatment vs. control condition

- Key assumption: Covariates are unaffected by treatment assignment
 - i.e., the schedule of covariates is FIXED regardless of whether an individual was assigned to treatment vs. control condition

• IMPLICATION: DO NOT adjust for posttreatment covariates!

- It will bias ATE
- It will turn your experimental study into a correlational study
- It will not allow you to make any causal claims

What is a posttreatment covariate?

• Any variables that: were measured after the treatment / may be affected by the treatment

Why you SHOULD NOT adjust for posttreatment covariate?

- Adjusting for posttreatment covariates **introduces bias** in your estimate of the average treatment effect, *even if treatment was randomly assigned to participants*
 - That is because variables that are affected by treatment cannot possibly be independent of treatment assignment
- Pervasive issue in social psychology -so called mediation analysis!

Why you SHOULD NOT adjust for posttreatment covariate?

Back to R Studio!

Robin Gomila | PSY 503 | Lecture 19: Heterogeneity and Experimental Regression Adjustments