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The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?
No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?
Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?

No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?
Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?
No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?
Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?
No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?

Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?
No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?
Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?
No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?
Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?
No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?
Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



The independence assumption

So far, we have operated in settings that do not violate the
independence assumption

What does this mean?
No form of connection between data points (within a variable)

e.g., rolling a die, flipping a coin

Examples of study designs that violate the independence assumption?
Repeated measures: more than one observation per participant

Data scraping: Tweets (observations) may come from the same twitter
account

Corpus linguistics: multiple data points from the same text or author

Cluster-randomized experiments: random assignment of communities,
schools, classroom to experimental conditions

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 2



Consequences of violation of independence assumption

If the regression analysis does not explicitly account for
non-independence:

Standard errors are biased downwards! i.e., they are unrealistically
small.

Therefore, p-values are also biased downwards! i.e., they are
unrealistically small too.

As a result, non-independence increases the probability of false
positives
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Misconceptions about non-independence

Non-independence DOES NOT bias estimates of treatment effects

i.e., regression coefficients will not be biased if you don’t include
random intercepts or random slopes in your model (more soon!)

UNLESS:
small number of clusters AND unequal cluster sizes AND cluster size
covaries with potential outcomes (Gerber & Green, 2012, p.83; see also
Green & Vavrek, 2008)

If you are in this situation, check out Middleton & Aronow (2011)
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Consequences of violation of independence assumption

In large enough samples, violations of independence assumption is
about standard errors, just like heteroskedasticity

But non-independence is a much much more important issue than
heteroskedasticity because the impact on the standard error is
consequential

Why is that?

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 5



Consequences of violation of independence assumption

In large enough samples, violations of independence assumption is
about standard errors, just like heteroskedasticity

But non-independence is a much much more important issue than
heteroskedasticity because the impact on the standard error is
consequential

Why is that?

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 5



Consequences of violation of independence assumption

In large enough samples, violations of independence assumption is
about standard errors, just like heteroskedasticity

But non-independence is a much much more important issue than
heteroskedasticity because the impact on the standard error is
consequential

Why is that?

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 5



Consequences of violation of independence assumption
Suppose an experimental design with “repeated measures”

Observations from the same participant are more similar to each other
than observations from different participants

As a result, residuals become clustered
All of the residuals of each participant act as a group

This “misleads” statistical inference
Equation for classic standard errors not appropriate. i.e., it does not
produce a realistic estimate of the standard deviation of the sampling
distribution of the parameter!

Sample size is artificially inflated

Estimates of the parameters “seem” more precise than they actually are

This is why standard errors are smaller than they should be to reflect
“empirical standard errors”
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When the independence assumption is violated. . .

Aggregation? Could we average observations from the same cluster?

Resolves the non-independence issue because we end up with one data
point per participant

This used to be the main way to deal with non-independence in many
fields

Not optimal: We lose some information when we aggregate data —the
variation across the non-independent cases is not retained in the final
analysis
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When the independence assumption is violated. . .

Inform your analysis about non-independence in your data

Use analytic strategy that allows you to incorporate non-independent
clusters of data into your regression analysis

Objective: draw appropriate statisitical inferences
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When the independence assumption is violated. . .

Two possible ways to go:
Specify clustered standard errors in your usual lm_robust() function

Mixed models / random effects using the lmer from the lme4 package

How to decide what to do?
It depends on your study design and what sources of variation you need
to account for
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Clustered standard errors

Use clustered SEs usually used in designs in which a treatment is
assigned in clusters

assignment of classrooms, schools, groups to an experimental condition

i.e., inference at the cluster level but you are getting multiple data
points per cluster

In these cases, use the argument clusters = in the following way:

lm_robust(Y ~ Z,
clusters = classroom,
data = dat)
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Clustered standard errors

Using clustered SEs basically indicates to the analysis that different
clusters may have different intercepts

In the mixed models framework, this is equivalent to models with
“random intercepts” or “varying intercepts”

A mixed model with random intercepts for clusters in lmer will produce
the exact same output!

Similarly, clustered SEs for participants in a “repeated measures”
design will produce the exact same result as a mixed model with lmer
with “random intercepts for participants”
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Mixed models: “fixed effects” vs. “random effects”

Differentiate “fixed effects” and “random effects”

We are very familiar with fixed effects
In the past few weeks, we have been fitting “fixed-effects-only” models

All the coefficients that we have looked at so far were “fixed effects”
(e.g., donation, income, Z, gender)

When we turn to mixed models, we can specify “random effects”
Random effects constitute different sources and forms of
non-independence in the data
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Examples of random effects

Different participants may have different intercepts (“random
intercepts”)

Different items may have different intercepts (“random intercepts”)

The relationship between Y and a fixed effect predictor (e.g., Z) may
vary by participant (“random slopes”)

The relationship between Y and a fixed effect predictor (e.g., Z) may
vary by item (“random slopes”)
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Let’s try to understand what this means
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Random effects: Illustration with a trust game study

Imagine a study testing the effect of looking trustworthy vs. neutral
on trust decisions in a behavioral game called the trust game

This game involves two players: Player A (first mover) and Player B
(second mover)

At the beginning of the game, Player A is endowed with 100
Monetary Units (MUs)

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 15



Random effects: Illustration with a trust game study

Imagine a study testing the effect of looking trustworthy vs. neutral
on trust decisions in a behavioral game called the trust game

This game involves two players: Player A (first mover) and Player B
(second mover)

At the beginning of the game, Player A is endowed with 100
Monetary Units (MUs)

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 15



Random effects: Illustration with a trust game study

Imagine a study testing the effect of looking trustworthy vs. neutral
on trust decisions in a behavioral game called the trust game

This game involves two players: Player A (first mover) and Player B
(second mover)

At the beginning of the game, Player A is endowed with 100
Monetary Units (MUs)

Robin Gomila | PSY 503 | Lecture 20: Multilevel Models 15



Random effects: Illustration with a trust game study

Player A is the first mover and decides how much of their endowment
to send to Player B
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Random effects: Illustration with a trust game study

Player A’s contribution is multiplied by 3 before arriving in the hands
of Player B
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Random effects: Illustration with a trust game study

Finally, Player B decides how much to send to Player A
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Random effects: Illustration with a trust game study

In the present case, both players would end the round with the same
amount of MUs
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Random effects: Illustration with a trust game study

In this hypothetical study:

All participants play with a bot

All participants are assigned to the role of Player A

Participants believe that they see the picture of their game partner
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Random effects: Illustration with a trust game study

Researchers randomly assign participants to one of two experimental
conditions:

Control condition: Play with a neutral looking face

Treatment condition: Play with a trustworthy looking face

Participants randomly assigned to play with 5 different faces from a
pool of 10 faces

Either 5 out of 10 neutral faces

Or 5 out of 10 trustworthy faces
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Random effects: Illustration with a trust game study
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Random effects: Illustration with a trust game study
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Random effects: Illustration with a trust game study
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Random effects: Illustration with a trust game study

Quantity of interest: Average Treatment Effect

Outcome variable Y : Amount of MUs that participants “invest” in
Player B

Random effects:
Random intercept for participants

Random intercepts for items

Random slopes for items
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Random effects: Illustration with a trust game study

Our plan:

Open R Studio

Generate population data—including these “random effects”

Study how different analytic strategies “perform” with regard to
estimating the ATE

Let’s do it!
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Mixed models in R

Most widely used R package for random effects is lme4

Syntax:

lmer(Y ~ Z + (1 | id),
data = dat)
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Mixed models in R

lmer(Y ~ Z + (1 | id),
data = dat)

This model estimates the (fixed) effect of Z on Y , allowing intercepts
to vary by participants

Y ~ Z looks familiar: estimates treatment effect

(1 | id) allows for random intercepts “conditional on” / “with
respect to” participants
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Random effects vs. Clustered standard errors

When robust and classic SEs agree, the following two functions yield
identical inferences:

lmer(Y ~ Z + (1 | id),
data = dat)

lm_robust(Y ~ Z,
clusters = id,
data = dat)
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Mixed models in R

lmer(Y ~ Z + (1 | id) + (1 | item),
data = dat)

This model estimates the (fixed) effect of Z on Y , allowing intercepts
to vary with respect to participants and items

For the ongoing hypothetical trust study, the mixed model could
represent the population data that we generated even better

We could include varying slopes with respect to items
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Mixed models in R

The model that best represents the population data is

lmer(Y ~ Z + (1 | id) + (1 + Z | item),
data = dat)

Let’s look at the main elements of this regression output
Note that the output produced on the next page uses summary() and
requires loading the lmerTest package
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Mixed models in R
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Should you “keep it maximal”?

Fully specified (a.k.a. “maximal”) mixed models often result in
“combinatorial explosions” (Winter, 2019) and often lead to so called
“convergence issues”

Example: The “maximal model” previously displayed for the present
trust study led to convergence issues for about 90% of the
simulations with 250 participants

That is, even though the model actually perfectly represents the
underlying structure of the data

Yet, you’ll often hear: “keep it maximal”
Let’s try to understand where this idea comes from!
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Should you “keep it maximal”?
Keeping it maximal became the norm / “the right thing to do” in
2013 after this article was published
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Should you “keep it maximal”?

Authors argue that the gold standard is to include all possible random
effects in the model

The idea is to prevent false positives

OK but we saw that preventing false positives by incurring a penalty
on SEs / p-value impacts the probability of false negatives

Remember that false positives can only occur when the null is true

What happens when the null is not true? Penalty on standard errors
leads to larger p-values and therefore, lower statistical power

Increase in false negatives when null is true
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Should you “keep it maximal”?

That’s why 5 years later, same journal:
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Should you “keep it maximal”?

The authors conclude:
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Should you “keep it maximal”?

Finally, check out this new preprint posted in August 2020:
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Should you “keep it maximal”?
The answer is: it depends! From this last preprint’s discussion
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Should you “keep it maximal”?

Last part of R code compares the estimates and standard errors of
different models

Keep in mind that the in the present simulated population, there exist
a treatment effect that we are trying to figure out

So we are looking at one side of the coin: Power to detect an existing
effect and probability of false negatives

And our setup does not include a lot of repeated measures!
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