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Motivations
Why Are You Taking a Foundational Course About

Statistics?
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Foundational knowledge?

o In which domains of life have you acquired some foundational
knowledge?

o When is foundational knowledge useful? Why spend time learning the
foundations of a discipline or activity?

o When is it less relevant?
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What methodological skills should psychological scientists
develop?

o Two possible routes:
o Simple algorithms: what to do and when?

o Foundations: how and why we do what we do in specific
circumstances?
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Making Bread: Simple Algorithms vs. Foundations

RECIPES = B

The asiest L.oaf
of Bread You'll
-Ev{:r'Bake

@ 127 REVIEWS SHARES

*RAhA EU®Y

With just five everyday ingredients, simple instructions, and

no advanced baking techniques, this recipe for European-style crusty

bread is a great introduction to yeast baking. It truly is “the easiest loaf
of bread you'll ever bake” — thanks in large part to the high-protein
of King Arthur Unbleached Bread Flour, which guarantees great

texture and a high rise no matter how elementary a baker you may be!

PREP BAKE TOTAL
20 mins 20 to 25 mins 2hrs 10 mins
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Fixing Car: Simple Algorithms vs. Foundations

Stocke!

auto ;
mechanics

fundamentals
M
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Norm Interventions: Simple Algorithms vs Foundations
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Psychological Methods and Simple Algorithms

o Historically: super controlled experiments on small samples of
undergrads

o Invite participants to the lab

Randomly assign them to one of two tasks

©

Collect data

©

©

Analyze data

Write an article

©
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Standard Dataset

participant_id reaction_time task
1001 9395 1
1002 38902 1
1003 14538 0
1004 13918 0
1005 10925 1
1006 19169 1
1007 18052 1
1008 22744 0
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Pick a method

o T-test, ANOVA, Simple linear regression

o They all yield same results!

o Learn how to apply the method you picked
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T-test in R

t.test(
data$reaction_time[data$task
data$reaction_time[data$task
var.equal = TRUE)

o],
11,
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ANOVA in R

TukeyHSD (
aov(reaction_time ~ task,
data = data)
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Simple Linear Regression in R

summary (
Ilm(reaction_time ~ task,
data = data)

Robin Gomila | PSY 503 | Lecture 2: Foundations? What? Why?

13



That's it!!
You have acquired 90% of the knowledge you need to

analyze experimental data from a super controlled lab

experiment that went extremely well.
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Problem?
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Problem:

Resistance to Change and Need for Methodological

Plasticity
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Resistance to Change

o Simple Algorithms make it difficult to adopt:
o New methods
o New study designs

o New technological tools
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Methodological Plasticity

o Psychology researchers need Methodological Plasticity

o Methodological Plasticity can be defined as the ability to:
o quickly grasp new statistical methods and research practices
o make reasonable interpretations of a wide array of statistical analyses

o feel comfortable adopting new analytic strategies and computational
tools
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Psychology Today
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Many Methods

Changing climates of conflict: A social network
experiment in 56 schools

Elizabeth Levy Paluck®', Hana Shepherd®, and Peter M. Aronow"?
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Many Methods

Changing climates of conflict: A social network
experiment in 56 schools

Elizabeth Levy Paluck®', Hana Shepherd®, and Peter M. Aronow"?

Evolution in Mind:
Evolutionary Dynamics,
Cognitive Processes, and
Bayesian Inference

Jordan W. Suchow, * David D. Bourgin," and
Thomas L. Griffiths’
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Many Methods

Computational Justice:
Simulating Structural Bias and Interventions

Ida Momennejad', Stacey Sinclair?, Mina Cikara®
1 Columbia University, 2 Princeton University, 3 Harvard University
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Many Methods

Computational Justice:
Simulating Structural Bias and Interventions

Ida Momennejad', Stacey Sinclair?, Mina Cikara®
1 Columbia University, 2 Princeton University, 3 Harvard University

A Graph-Theoretic Approach to Multitasking

Jonathan D. Cohen *  Biswadip Dey I Tom Griffiths *
Sebastian Musslick § ~ Kayhan Ozcimder ¥ Daniel Reichman
Igor Shinkar ** Tal Wagner 1f
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Many Methods

Modeling the Partial Productivity of Constructions

Libby Barak and Adele E. Goldberg
Psychology Department
Princeton University
NIJ, USA 08540
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Many Methods

Modeling the Partial Productivity of Constructions

Libby Barak and Adele E. Goldberg
Psychology Department
Princeton University
NIJ, USA 08540

Choosing Prediction Over Explanation
in Psychology: Lessons From Machine
Learning

Tal Yarkoni and Jacob Westfall

University of Texas at Austin
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Many Roles

o Evaluate research
o Survey the literature
o Feedback to colleagues
o Attend talks
o Collaborate

o Review manuscripts
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Many Roles

o Be evaluated by people who hold very different views!
o Editors, reviewers, colleagues, students

o Your methodological decisions will be challenged
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| repeat, your methodological decisions will be challenged
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| repeat, your methodological decisions will be challenged

Logistic or Linear? Estimating Causal Effects of Experimental Treatments

on Binary Outcomes Using Regression Analysis

Robin Gomila

Princeton University

‘Word count = 5,505
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Logistic vs. Linear on Academic Twitter

M)\ Robin Gomila

@RobinGomila

When the outcome is binary: logistic or linear?
Preprint is ready, feedback much welcome!!

Abstract

When the outcome of interest is binary, psychologists often use nonlinear modeling

or probit. Whereas these strategies are necessary in the contest
of prediction, they are often neither optimal nor ustifiod when the objective i to
estimate causal effcts. Rescarchers need to take extra steps to convert Iogit and probit
coefficents into interpretable quantities and when they o, these quantites often

remain diffieult to understand, Odds ra

o8, for instance, aze described as obseure in

many textbooks (e,

man & THl, 2006, p. 53). T this paper, T draw on econometric
heory and established statsical findings to demonstrate that lincar regeesion (OLS) is
senerlly the best strategy to estimate causal ffcts on binary outcomes, First,linear

vegession is computationally simpler than nonlinear regr

ion analysis. Second, OLS

coeficients are directly interpretable in tems of probabiltes. Finall, when
adjustments such as interaction terms or fixed effects are involved,linear regression is a
safer choico. Afer disussing the rlovant literatuz, 1 ntzodce the “Neyman Rubin
Consal Model’, which 1 s to prove analytially that inear regression yields unbinsed
estmates of causal efects, cven when outcomes are binary. Then, [ run simulations and
analyze existing data on 24,191 students from 56 middle schools (Paluck, Shepherd, &
Avonow, 2016) to llustrate the effctiveness of linear regression with binary outcames.

Based on these grounds, I recommend that psychologists use linear regression nstead of

logit or probit models to estimate causal cffects on binary outcomes,
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Logistic vs. Linear on Academic Twitter

Brendan Nyhan & @BrendanNyhan - Jul 13, 20
Dear R2: OLS is *better* for binary outcomes in experiments. Love,
everyone.

2 Robin Gomila @RobinGomila - Jul 11, 20
When the outcome is binary: logistic or linear?
Preprint is ready, feedback much welcome!!
psyarxiv.com/4gmbv

of prediction, they are often ncither optimal nor justified when the objective is to
estimate causal effects. Researchers need to take extra steps to convert logit and probit
coefficients into interpretable quantities, and when they do, these quantities often
remain difficult to understand. Odds ratios, for instance, are described as obscure in
many textbooks (e.g., Gelman & Hill, 2006, p. 83). In this paper, I draw on econometric
theory and established statistical findings to demonstrate that linear regression (OLS)

generally the best strategy to estimate causal effects on binary outcomes. First, linear

regression is computationally simpler than nonlinear regression analysis. Second, OLS

coefficients are directly interpretable in terms of probabilities. Finally, when
adjustments such as interaction terms or fixed effects are involved, linear regression is a

safer choice. After discussing the relevant literature, T introduce the “Neyman-Rubin
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Logistic vs. Linear on Academic Twitter

Brendan Nyhan & ( yhan - Jul 1 9
Dear R2: OLS is *better* for binary outcomes in experiments. Love,
everyone.

“ Robin Gomila @RobinGonmila - Jul 11, 2019
When the outcome is binary: logistic or linear?
Preprint is ready, feedback much welcom
psyarxiv.com/4gmbyv

of prediction, they are often neither optimal nor justified when the objective is to
estimate causal effets. Researchers need to take exiza steps 1o convert logit and probit
coeficents into interpretable quantitics, and when they o, these quantities often
remain diffcult to understand. Odds ratios, for instance, are deseribed as obscure in
‘many textbooks (e, Gelman & Hill, 2006, p. 83). In this paper, I draw on ecconometric
theory and established statistical findings to demonstrate that lincar regtession (OLS) is
generally the best strategy to estimate causal effcts on binary outcomes. First, lincar
sion is computationally simpler than nonlinear regression analysis. Second, OLS.
‘couficients are dircetly interpretable in terms of probabilitics. Finally, when
adjustments such s interaction terms or fixed effects are involved, linear regression is &

safer choice, After discussing the relevant literature,  introduce the “Neyman-Rubin

Nate Silver @
DNateSilver538

Replying tc

Ehh, | kind of think this is wrong. If the underlying system
your model describes is bounded between 0 and 1, your
model probably should be also.

12:57 PM - Jul 13, 2019
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Debates and controversies around statistical methods
happen all the time

SHARE

00600

Comment on “Estimating the reproducibility of
psychological science”

Daniel T. Gilbert'~", Gary King', Stephen Pettigrew’, Timothy D. Wilson?
"Harvard University, Cambridge, MA, USA.

2University of Virginia, Charlottesville, VA, USA.

«I"Corresponding author. E-mail: gilbert@wjh. harvard.edu

- Hide authors and affiliations

Science 04 Mar 2016:
Vol. 351, Issue 6277, pp. 1037
DOI: 10.1126/science.aad7243

Article Info & Metrics eletters PDF

Abstract

A paper from the Open Science Collaboration (Research Articles, 28 August 2015, aac4716)
attempting to replicate 100 published studies suggests that the reproducibility of
psychological science is surprisingly low. We show that this article contains three statistical
errors and provides no support for such a conclusion. Indeed, the data are consistent with the
opposite conclusion, namely, that the reproducibility of psychological science is quite high.
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Foundational Knowledge and Methodological Plasticity

o Empower you as a researcher
o Many methods
o Many roles

o Many opinions
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Building Plasticity

Yes, but how?
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Underlying Structure of Psychological Methods

o Two components:
o Statistical

o Computational
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Statistical Pillars of Psychological Methods

o Probability Theory
o Causality

o Regression
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Probability Theory

Relevance
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Evaluating a claim

o At a dinner party, your friend Charlie says:

“I have a superpower. Since | was a kid, |'ve been able to see what
people are doing without being with them. | just close my eyes,
think about someone, and | find myself in the room with them.
Let me try and find out what my sister is currently doing. ..
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Evaluating a claim

o At a dinner party, your friend Charlie says:

“I have a superpower. Since | was a kid, |'ve been able to see what
people are doing without being with them. | just close my eyes,
think about someone, and | find myself in the room with them.
Let me try and find out what my sister is currently doing... At
the moment, she is walking her dog.”
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Evaluating a claim

o At a dinner party, your friend Charlie says:

“I have a superpower. Since | was a kid, |'ve been able to see what
people are doing without being with them. | just close my eyes,
think about someone, and | find myself in the room with them.
Let me try and find out what my sister is currently doing... At
the moment, she is walking her dog.”

o In search for evidence, you suggest:

“Charlie, | am going to go to the kitchen to prepare coffee for
everyone. I'll make eight cups of coffee, four of which will contain
sugar. Will you be able to tell which cups contain sugar when |
come back?”
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Evaluating a claim

o At a dinner party, your friend Charlie says:

“I have a superpower. Since | was a kid, |'ve been able to see what
people are doing without being with them. | just close my eyes,
think about someone, and | find myself in the room with them.
Let me try and find out what my sister is currently doing... At
the moment, she is walking her dog.”

o In search for evidence, you suggest:

“Charlie, | am going to go to the kitchen to prepare coffee for
everyone. I'll make eight cups of coffee, four of which will contain
sugar. Will you be able to tell which cups contain sugar when |
come back?”

o Charlie accepts the challenge and correctly identifies the cups that
contain sugar
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Evaluating a claim

o Should you conclude that Charlie has superpowers?
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This is a serious question
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Tournal of Personality and Social Psychology © 2011 American Psychological Association
2011 Vol. 100, No. 3, 407-425 0022-3514/11/812.00  DOL: 10.1037/a0021524

Feeling the Future: Experimental Evidence for Anomalous Retroactive
Influences on Cognition and Affect

Daryl J. Bem
Cornell University

The term psi denotes anomalous processes of information or energy transfer that are currently unex-
plained in terms of known physical or biological mechanisms. Two variants of psi are precognition

fous cognitive )and ition (affective app fon) of a future event that could not
otherwise be anticipated through any known inferential process. Precognition and premonition are
themselves special cases of a more general the retroactive influence of some
future event on an individual's current responses. whether those responses are conscious or noncon-
scious, cognitive or affective. This article reports 9 experiments, involving more than 1,000 participants.
that test for retroactive influence by “time-reversing” well-cstablished psychological effects so that the
individual’s responses are obtained before the putatively causal stimulus events occur. Data are presented
for 4 time-reversed effects: precognitive approach 1o erotic stimuli and precognitive avoidance of
negative stimuli: ive priming: fon; and itation of recall. The
mean cffect size () in psi performance across all 9 experiments was 0.22, and all but one of the
experiments yielded statistically significant results. The individual-difference variable of stimulus seek-
ing, a of fon, was significantly correlated with psi performance in 5 of the
experiments, with participants who scored above the midpoint on & scale of stimulus seeking achieving
a mean effect size of 0.43. Skepticism about psi, issues of replication, and theories of psi arc also
discussed.
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Scientific Approach: Does Charlie have superpowers?

o Scientific approach is probabilistic!

o Null Hypothesis

o Hy: Charlie does not have special abilities
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Scientific Approach: Does Charlie have superpowers?

o Scientific approach is probabilistic!
o Null Hypothesis

o Hy: Charlie does not have special abilities
o Hypothesis testing

o Does this hypothesis make sense, given the data? Do the data
contradict this hypothesis, making it highly implausible?

o Proof by contradiction
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Testing the null hypothesis

o Under Hy: 70 possible outcomes

o Charlie could have randomly chosen 4 cups in 70 different ways
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Testing the null hypothesis

o Under Hy: 70 possible outcomes
o Charlie could have randomly chosen 4 cups in 70 different ways

o Combinations of 4 possible elements within a broader set of 8 elements

[1,2,3,4] [1,2,5,7]
[1,2,3,5] [1,2,5,8]
[1,2,3,6] [1,2,6,8]
[1,2,3,7] [1,2,7,8]
[1,2,3,8] [1,3,4,5]
1,2,4,5] [1,3,4,6]
[1,2,4,6] [1,3,4,7]
1,2,4,7) 1,3,4,8]
[1,2,4,8] [1,3,5,6]
11,2,5,6] [1,3,5,7)
[
[4,5,6,7] [4,6,7,8]
[4,5,6,8] [5,6,7,8]
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Testing the null hypothesis

o Under Hy, Charlie 's chances of finding the combination of 4 cups is:

° % =.014
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Testing the null hypothesis

o Under Hy, Charlie 's chances of finding the combination of 4 cups is:
° % =.014
o This number is a probability:

o Charlie has 1.4% chances of finding the correct combination without
superpowers
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Testing the null hypothesis

o Under Hy, Charlie 's chances of finding the combination of 4 cups is:

° % =.014
o This number is a probability:

o Charlie has 1.4% chances of finding the correct combination without
superpowers

o This number is a p-value
o p<.05
o Reject the null

o Conclude that Charlie has superpowers
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Lessons from Charlie

o Science is cumulative
o Repeat performance several times

o Fisher: “Personally, the writer prefers to set a low standard of
significance at the 5 percent point. .. A scientific fact should be
regarded as experimentally established only if a properly designed
experiment rarely fails to give this level of significance.”
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Lessons from Charlie

o Science is cumulative
o Repeat performance several times

o Fisher: “Personally, the writer prefers to set a low standard of
significance at the 5 percent point. .. A scientific fact should be
regarded as experimentally established only if a properly designed
experiment rarely fails to give this level of significance.”

o Psychological methods build heavily on Probability Theory

o Probability theory is a framework for understanding and quantifying
uncertainty

o Psychology studies inevitably involve some degree of randomness and
therefore, uncertainty
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Causality

Relevance
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What types of questions do psychological scientists ask?
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What types of questions do psychological scientists ask?

o Psychologists (most often) ask causal questions
o Are police officers more likely to shoot Black people?
o Do diversity trainings reduce prejudice against minority groups?

o Does social support improve well-being? Does cognitive-based therapy
reduce depressive symptoms?

o Understand whether a variable X causes a psychological or behavioral
outcome Y

Robin Gomila | PSY 503 | Lecture 2: Foundations? What? Why?

44



Causality: a giant with feet of clay

o Human mind tends to interpret relationships in causal terms, and is
often wrong! Examples?
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Causality: a giant with feet of clay

o Human mind tends to interpret relationships in causal terms, and is
often wrong! Examples?

o People's race and their performance at “intelligence” tests
o People's gender and mathematical abilities
o Moving to California and life expectancy
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Seriously, should we all move to California?
V‘m . v f @ A

Want to live longer, even if you're poor? Then
move to a big city in California.

By EzraKiein | @esrakien | Apr 13,2016, 130pm EDT

f W s

8

2

Life Expectancy at Age 40 (race-adjusted)
2

Household Income Percentile
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Causality: a giant with feet of clay

o Causality is difficult to establish
o Rigorous studies and statistical analyses easily get it wrong.

o Subtle elements of study designs, randomization procedures,
participants’ behavior during the study, analytic strategies, or statistical
analyses can compromise researchers’ ability to make a causal claim.
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Causality: a giant with feet of clay

o Simpson’s Paradox

Cholesterol

Exercise
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Causality: a giant with feet of clay

o Simpson’s Paradox

Cholesterol

= X

Cholesterol

Exercise

Exercise

49
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Regression

Relevance
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What is regression?

o A powerful and highly-flexible tool to represent the relationship
between variables

o Describe how an outcome Y varies with a single or a series of
variables X

o Suited for the analysis of experimental, quasi-experimental and
observational datasets, and can be used to make predictions.
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Computational Foundations
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Computational Tools

o Expect them to change
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