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What is Probability theory?

Probability theory is the study of random processes (a.k.a., random
generative processes, random phenomena).
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Random processes: Intuition

Let’s flip a fair coin

Can you tell me what the outcome will be?

If we were to flip a fair coin many many times, would you be able to
tell the proportion of times that we would obtain heads?

If answer to first question is “NO”

AND

Answer to second question is “YES”

THEN

You are dealing with a random process
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Definition

Random processes are mechanisms that produce (probabilistic)
outcomes. . . from a world of possible outcomes. . . with some degree of
uncertainty but with regularity.
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Components of random generative processes
Sample space: Ω

The set of all possible outcomes

“world of probabilistic outcomes”

e.g., heads and tails

Outcome: ω

Possible realization of the random process

e.g., heads

Event: A, B, C, etc.
A given outcome or set of outcomes

e.g., “tails did not happen”

Probability: Proportion of times an event or set of events will occur
if you keep repeating the random process
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Examples of random processes

Random assignment of N individuals to an experimental condition

Random draw of a sample of n individuals from a population of N
individuals

Rolling a die
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Illustration: Random assignment

We randomly assigned an individual to a Treatment (T) vs. Control
(C)

Sample space?

We could express Ω in the following ways:
Ω = {Treatment, Control}

Ω = {T, C}

What if we assigned two individuals to Treatment (T) vs. Control (C)
Ω = {TT, TC, CT, CC}
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Events

An event is a subset of the sample space Ω and corresponds to the
realization of one or more than one outcomes ω
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Example

Let Ω = {TT, TC, CT, CC}

We could let A be event that both individuals are assigned to the
same experimental condition

We could write:
A = {TT, CC}

Another example?
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Notations
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Practice with Events

We randomly assign 8 participants to T vs. C
Possible outcome:

ω = TTTTCCTC

Sample space: Set of all possible strings of length 8 of T’s and C’s
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Practice with events

Let’s randomly generate a possible outcome ωj in R

sample(c("T", "C"),
size = 8,
replace = TRUE)

[1] "T" "T" "C" "C" "T" "T" "T" "C"

In the background, does R draw from this sample space?

NO: Keep in mind that R draws an outcome ωj from Ω = {T, C} 8
times in a row with replacement
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More practice with events

Let C1 be the event that the first participant is assigned to the
control condition

e.g., {CTCTCTTT}, {CTTTTTTC}, or {CCCCCTTC}

We could express this more generally:
C1 = {(C, ω2, ..., ω8) : ωj ∈ {T, C} for 2 ≤ j ≤ 8}
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More practice with events
Let Ci be the event that the ith participant is assigned to the control
condition, for i = 1, 2, 3, ..., 8, and use Ci to define other events.

Let A be the event, that at least one participant was assigned to
control condition. We can write:

A = C1 ∪ C2 ∪ ... ∪ C8 (1)

i.e., Participant 1 or participant 2 or . . . or participant 8 was assigned to
control

We could have written:

A =
8⋃

i=1
Ci (2)
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More practice with events

B =
8⋂

i=1
Ci (3)

In plain English?
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Naive probability of an event

Let A be an event with a finite sample space Ω. The naive probability of
A is

P (A) = |A|
|Ω| (4)

in which |A| is the number of possible outcomes ω that satisfy A, and |Ω|
is the total number of possible outcomes ω within Ω.
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Wait, why is this naive?

Requires Ω to be finite

Requires each possible outcome ω to have the same weight
This can be misleading!

e.g., polls, attrition
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Probability model: Definition

The probability model of a random phenomenon is the
mathematical representation of this phenomenon. It includes:

All of the possible outcomes included in the sample space

The probability of each possible probabilistic outcome ω included in the
sample space

This is all that there is to know about a random phenomenon

Very powerful: Contain enough information to predict with certainty
the percentage of times that an outcome ω will happen if we repeat
the random generative process many (many, many, many) times
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Probability model: Intuition

Overall, the probability of an outcome ω is the percentage of times that
this outcome will happen if we repeat the random generative process:

over and over again

independently

under the exact same conditions
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Probability model: Example

The probability model of rolling a fair die includes:
Its sample space: Ω = {1, 2, 3, 4, 5, 6}

The probability of each possible outcome ωj is: P(wj) = 1
6

If we wonder what are the possible outcomes of rolling a fair die, we
simply need to look at the probability model to realize that there are 6
possible outcomes.

If we wonder how likely it is that we will get a 6 after rolling a fair die,
again, we can look at its probability model and learn that the probability
of getting a 6 is 1

6
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Probability Rules
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Probability rule # 1

Probabilities take values between 0 and 1 (inclusive)

For some event A:
0 ≤ P (A) ≤ 1

Probability cannot be negative

Probability cannot be greater than 1
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Probability rule # 2

Since Ω is the entire sample space,

P (Ω) = 1

e.g., What is the probability of getting an even or an odd number
after rolling a fair die?
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Probability rule # 3

The probability that A or B occurs is the probability of the union of
A and B

Denoted by P (A ∪ B)

Addition rule:

P (A ∪B) = P (A) + P (B)− P (A ∩B)
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Mutually exclusive events

Two events Ai and Aj are mutually exclusive (or disjoint) if they
cannot happen at the same time

For i 6= j, we have:
Ai ∩ Aj = ∅
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Probability rule # 3 for mutually exclusive events

Under the addition rule:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

But what is P (A ∩B)? P (A ∩B) = 0

Therefore,
P (A ∪B) = P (A) + P (B)
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Probability rule # 3 generalized to any number of
mutually exclusive events

Given any number of mutually exclusive events A1, A2, ..., An, the
probability that one of these events will occur is the sum of their
individual probabilities:

P (A1 ∪ A2 ∪ ... ∪ An) = P (A1) + P (A2) + ... + P (An)

Let F be the event of rolling a fair die and getting an even number
F = {2, 4, 6} = 2 ∪ 4 ∪ 6

P (F ) = P (2) + P (4) + P (6)

Robin Gomila | PSY 503 | Lecture 6: Basics of Probability Theory 27



Probability rule # 3 generalized to any number of
mutually exclusive events

Given any number of mutually exclusive events A1, A2, ..., An, the
probability that one of these events will occur is the sum of their
individual probabilities:

P (A1 ∪ A2 ∪ ... ∪ An) = P (A1) + P (A2) + ... + P (An)

Let F be the event of rolling a fair die and getting an even number
F = {2, 4, 6} = 2 ∪ 4 ∪ 6

P (F ) = P (2) + P (4) + P (6)

Robin Gomila | PSY 503 | Lecture 6: Basics of Probability Theory 27



Probability rule # 4

The complement of event A is referred to as Ac

By definition
P (A) + P (Ac) = 1

This implies
P (Ac) = 1− P (A)
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