PSY 503: Foundations of Psychological Methods Lecture 6: Basics of Probability Theory

Robin Gomila

Princeton

September 16, 2020

Robin Gomila | PSY 503 | Lecture 6: Basics of Probability Theory

What is Probability theory?

Probability theory is the study of **random processes** (a.k.a., **random generative processes**, **random phenomena**).

Random processes: Intuition

- Let's flip a fair coin
- Can you tell me what the outcome will be?
- If we were to flip a fair coin many many times, would you be able to tell the proportion of times that we would obtain heads?
- If answer to first question is "NO"

AND

Answer to second question is "YES"

THEN

• You are dealing with a random process

Random processes are **mechanisms** that produce (probabilistic) outcomes... from **a world of possible** outcomes... with some degree of **uncertainty** but with **regularity**.

Components of random generative processes

• Sample space: Ω

- The set of all possible outcomes
- "world of probabilistic outcomes"
- e.g., heads and tails

• Outcome: ω

- Possible realization of the random process
- e.g., heads
- **Event:** *A*, *B*, *C*, etc.
 - A given outcome or set of outcomes
 - e.g., "tails did not happen"
- **Probability:** Proportion of times an event or set of events will occur if you keep repeating the random process

Robin Gomila | PSY 503 | Lecture 6: Basics of Probability Theory

Examples of random processes

- $\bullet\,$ Random assignment of N individuals to an experimental condition
- ${\ensuremath{\, \circ }}$ Random draw of a sample of n individuals from a population of N individuals
- Rolling a die

Illustration: Random assignment

- We randomly assigned an individual to a Treatment (T) vs. Control (C)
- $\bullet\,$ Sample space? We could express Ω in the following ways:

• $\Omega = \{\text{Treatment, Control}\}$

- $\Omega = \{T, C\}$
- What if we assigned two individuals to Treatment (T) vs. Control (C)
 Ω = {TT, TC, CT, CC}

An event is a subset of the sample space Ω and corresponds to the realization of one or more than one outcomes ω

Example

- Let $\Omega = \{TT, TC, CT, CC\}$
- \bullet We could let A be ${\bf event}$ that both individuals are assigned to the same experimental condition
- We could write:
 - $A = \{TT, CC\}$
- Another example?

Notations

Syntax	Description
Ω	sample space
ω	a possible probabilistic outcome
$A\cup B$	A or B
$A\cap B$	A and B
A^C	$\operatorname{not} A$
$A_1\cup A_2\cup\ldots\cup A_n$	at least one of A_1, \ldots, A_n
$A_1\cap A_2\cap\ldots\cap A_n$	all of A_1, \ldots, A_n
$A\cap B=\emptyset$	A and B are mutually exclusive

Practice with Events

- We randomly assign 8 participants to T vs. C
 - Possible outcome: $\omega = TTTTCCTC$
 - Sample space: Set of all possible strings of length 8 of T's and C's

Practice with events

• Let's randomly generate a possible outcome ω_j in R

```
sample(c("T", "C"),
    size = 8,
    replace = TRUE)
```

[1] "C" "T" "C" "T" "C" "T" "C" "T"

- In the background, does R draw from this sample space?
- NO: Keep in mind that R draws an outcome ω_j from $\Omega = \{T, C\}$ 8 times in a row with replacement

More practice with events

- Let C_1 be the event that the first participant is assigned to the control condition
 - e.g., {CTCTCTTT}, {CTTTTTTC}, or {CCCCCTTC}
- We could express this more generally:

•
$$C_1 = \{(C, \omega_2, ..., \omega_8) : \omega_j \in \{T, C\} \text{ for } 2 \le j \le 8\}$$

More practice with events

- Let C_i be the event that the *i*th participant is assigned to the control condition, for i = 1, 2, 3, ..., 8, and use C_i to define other events.
- Let A be the event, that at least one participant was assigned to control condition. We can write:

$$A = C_1 \cup C_2 \cup \dots \cup C_8 \tag{1}$$

i.e., Participant 1 or participant 2 or ... or participant 8 was assigned to control

• We could have written:

$$A = \bigcup_{i=1}^{8} C_i \tag{2}$$

More practice with events

$$B = \bigcap_{i=1}^{8} C_i$$

In plain English?

Robin Gomila | PSY 503 | Lecture 6: Basics of Probability Theory

(3)

Naive probability of an event

Let A be an event with a finite sample space $\Omega.$ The *naive probability* of A is

$$P(A) = \frac{|A|}{|\Omega|} \tag{4}$$

in which |A| is the number of possible outcomes ω that satisfy A, and $|\Omega|$ is the total number of possible outcomes ω within Ω .

Wait, why is this naive?

- Requires Ω to be finite
- ${\ensuremath{\,\circ}}$ Requires each possible outcome ω to have the same weight
 - This can be misleading!
 - e.g., polls, attrition

Probability model: Definition

- The **probability model** of a random phenomenon is the mathematical representation of this phenomenon. It includes:
 - All of the possible outcomes included in the sample space
 - ${\, \bullet \, }$ The probability of each possible probabilistic outcome ω included in the sample space
- This is all that there is to know about a random phenomenon
- Very powerful: Contain enough information to predict with certainty the percentage of times that an outcome ω will happen if we repeat the random generative process many (many, many, many) times

Probability model: Intuition

Overall, the probability of an outcome ω is the percentage of times that this outcome will happen if we repeat the random generative process:

- over and over again
- independently
- under the exact same conditions

Probability model: Example

• The probability model of rolling a fair die includes:

- Its sample space: $\Omega = \{1, \, 2, \, 3, \, 4, \, 5, \, 6\}$
- The probability of each possible outcome ω_j is: $P(w_j) = \frac{1}{6}$

If we wonder what are the possible outcomes of rolling a fair die, we simply need to look at the probability model to realize that there are 6 possible outcomes.

If we wonder how likely it is that we will get a 6 after rolling a fair die, again, we can look at its probability model and learn that the probability of getting a 6 is $\frac{1}{6}$

Probability Rules

Probability rule # 1

- Probabilities take values between 0 and 1 (inclusive)
- For some event *A*:

 $0 \le P(A) \le 1$

- Probability cannot be negative
- Probability cannot be greater than 1

Probability rule # 2

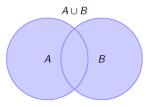
• Since Ω is the entire sample space,

 $P(\Omega) = 1$

• e.g., What is the probability of getting an even or an odd number after rolling a fair die?

Probability rule # 3

- $\bullet\,$ The probability that A or B occurs is the probability of the union of A and B
- Denoted by $P(A \cup B)$

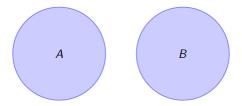


• Addition rule:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually exclusive events

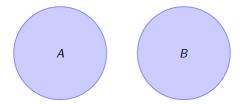
• Two events A_i and A_j are **mutually exclusive** (or **disjoint**) if they cannot happen at the same time



• For $i \neq j$, we have:

$$A_i \cap A_j = \emptyset$$

Probability rule # 3 for mutually exclusive events



• Under the addition rule:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• But what is $P(A \cap B)$? $P(A \cap B) = 0$

• Therefore,

$$P(A \cup B) = P(A) + P(B)$$

Probability rule # 3 generalized to any number of mutually exclusive events

• Given any number of *mutually exclusive* events $A_1, A_2, ..., A_n$, the probability that one of these events will occur is the sum of their individual probabilities:

•
$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

• Let F be the event of rolling a fair die and getting an even number

•
$$F = \{2, 4, 6\} = 2 \cup 4 \cup 6$$

• $P(F) = P(2) + P(4) + P(6)$

Robin Gomila | PSY 503 | Lecture 6: Basics of Probability Theory

Probability rule # 4

- ${\ensuremath{\, \bullet }}$ The complement of event A is referred to as A^c
- By definition

$$P(A) + P(A^c) = 1$$

• This implies

$$P(A^c) = 1 - P(A)$$