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What is a random variable?

Think about the following random phenomenon: “randomly selecting
2 students in this virtual room”

Sample space?

One possible outcome: ω = {Tyler, Stats}

Another possible outcome: ω = {Sana, Sev}

Can this be considered a random variable?
No. Random variables are always numeric

We operate on random variables using math
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Illustration

For example, a possible random variable (rv) is the number of
students in my sample with first letter equal to “S”

This rv would translate {Tyler, Stats} into the number 1

This rv would translate {Sana, Sev} into the number 2
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Example: Duos and Trios

Half of the students in a classroom works on their project in pairs (P)
and the other half in trios (T)

We randomly select 2 students in this classroom, and let the random
variable W be the number of students who work in pairs

Sample space: Ω = {TT,PT,TP,PP}

Random variable and probability of each outcome
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From outcomes to numbers
Random variables are translations of outcomes of a random process
into numbers

Formally, a random variable is defined as a function that maps the
sample space Ω of a random generative process into the real line (or
into real numbers)
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From probabilistic events to random variables

Let event A be selecting at least one student who is part of a trio.
Addition rule:

P (A) = P (TT) + P (PT) + P (TP) = 3
4

Let the random variable Y indicate if at least one of the two selected
students is part of a trio

Y takes the value 1 if this is the case, and 0 otherwise

We write:
P (Y = 1) = 3

4
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Support of a random variable: Definition

The support of a random variable is the set of all possible values that a
random variable can take.
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Distribution functions

The distribution of a random variable X describes the likelihood of
the values that X can take

We will see different distribution functions of random variables

Earlier, we derived the distribution of a simple rv by directly
investigating the underlying sample space
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Distribution functions

We let W be the number of students who work in pairs and found
that the distribution of W is
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Probability model (sample space) vs. distribution function
(rv)

We are rarely interested in the probability of each outcome from the
sample space Ω (e.g., slide 5)

We are interested in the numeric information that are contained in
random variables

Random generative process, sample space, and probabilistic outcomes
are always in the background

But they provide too much information

Distribution functions of random variables summarize the relevant
information for that random generative process
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Categories of random variables

Two types of random variables
Discrete

Continuous

We focus on discrete for now
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Discrete random variables: Definition

Discrete random variables are defined on a range that is a countable
set

i.e., they can only take on a finite or countably infinite number of
different values
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Probability Mass Function

Let X be a discrete rv

The probability mass function (PMF) of X summarizes the
probability of each outcome x

PMF: function p given by

p(x) = P (X = x)

for all possible values of x
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Example: Dessert tonight

Imagine that you started a strict diet a few days ago. You are at a dinner
party and realize that your friend made your favorite dessert. You are very
tempted and decide to use coin flips to help you make a decision about
whether to eat some of that dessert. You will flip a coin three times, the
number of times that the flip returns TAILS determines the number of
bites that you will have.
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Example: Dessert tonight

Before you start flipping the coin, you want to learn more about your
chances to have different quantities of dessert tonight. That is, you decide
to look at the probability of each possible outcome.

To begin with, you define the random variable X as the number of times a
series of three coin flips returns tails (T).
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Example: Dessert tonight

The support of X is {0, 1, 2, 3}, we can write

p(x) =


0 if (HHH)
1 if (HHT) or (HTH) or (THH)
2 if (TTH) or (HTT) or (THT)
3 if (TTT)

(1)
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Example: Dessert tonight

Using the naive definition of probability, we can easily calculate that:

p(0) = P (X = 0) = P (CCC) = 1
8

p(1) = P (X = 1) = P (HHT) + P (HTH) + P (THH) = 3
8

p(2) = P (X = 2) = P (TTH) + P (HTT) + P (THT) = 3
8

p(3) = P (X = 3) = P (TTT) = 1
8

This is the content of the PMF of X
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PMF of X

The PMF of X is
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PMF of X

We most often express the PMF in the following way

p(x) =



1
8 if x = 0
3
8 if x = 1
3
8 if x = 2
1
8 if x = 3
0 otherwise

(2)
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Property of PMFs

For any value x, we have 0 ≤ p(x) ≤ 1, and

n∑
j=1

p(xj) = 1 (3)
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Parametric Discrete Distributions
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What are the main characteristics of parametric
distributions?

Famous

Common

Have their own name

Parametric: they have a pre-calculated PMF that depends entirely
on at least one parameter

Once we know the relevant parameter(s), we have all the information
we need to calculate the probability of any events, such as the
probability that X = 2
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The Bernoulli distribution

Simplest possible parametric distribution
Only one parameter! Generally called θ

Whenever you see a variable that is binary
i.e., that can take on only two values: 0 and 1

Robin Gomila | PSY 503 | Lecture 8: Random Variables I 23



The Bernoulli distribution

Simplest possible parametric distribution
Only one parameter! Generally called θ

Whenever you see a variable that is binary
i.e., that can take on only two values: 0 and 1

Robin Gomila | PSY 503 | Lecture 8: Random Variables I 23



The Bernoulli distribution

θ indicates the “probability of success”
Probability that the random variable returns 1

Formally, for any Bernoulli rv, we have:

P (X = 1) = θ

P (X = 0) = 1− θ

If you know θ, you know everything:
e.g., mean, median, variance, standard deviation, mode (more soon!)

We write X ∼ Bern(θ)
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Example: Trendy Dining in NYC

Imagine that you manage a trendy dining in New York that has capacity
for 30 tables. You are fully booked until the end of the year, but you are
considering overbooking because every night, some reservations do not
show up. Specifically, you know that on average, only 90% of the
reservations show up on a given night.

Let Xi be a random variable that indicates whether reservation i showed
up on a given night.

Xi is a Bernoulli random variable because it can only take on the value 0
(if a reservation did not show up) and 1 (if a reservation did show up).
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Example: Trendy Dining in NYC

The parameter θ is the probability of “success”:
i.e., probability that a reservation shows up.

We have:
θ =

0.90

P (X = 1) = θ = 0.90

P (X = 0) = 1− θ = 0.10
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Trendy Dining: PMF

p(x) =


0.10 if x = 0
0.90 if x = 1

0 otherwise

(4)
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Trendy Dining: PMF
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Trendy Dining: New strategies

Imagine that you decide to adopt a new strategy: accepting more
reservation than you can host. To test the water, you will accept a total of
34 reservations for August 21 and 35 reservations for August 22. Let’s use
R to simulate what happened on these two nights.
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Trendy Dining: Simulations

set.seed(0821)

august21_night <- sample(0:1,
34,
replace = TRUE,
prob = c(.10, .90))

head(august21_night, 10)

## [1] 1 1 1 0 1 1 1 0 1 1

sum(august21_night)

## [1] 29
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Trendy Dining: Simulations

YAY! 29 tables showed up on August 21.

Let’s see what happened on the next day.
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Trendy Dining: Simulations

set.seed(0822)

august22_night <- sample(0:1,
35,
replace = TRUE,
prob = c(.10, .90))

head(august22_night, 10)

## [1] 1 0 1 1 1 1 1 1 1 0

sum(august22_night)

## [1] 31
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Trendy Dining: Simulations

Terrible! You weren’t able to accommodate all of your reservations on that
night. Not good for your your yelp reviews!
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Trendy Dining: What to do on August 23?

How lucky did you get on August 21? How unlucky did you get on
August 22?

How often will it be the case that if you book a certain number (e.g.,
4) of extra tables every night, you will not be able to serve all of
those that show up?

We need to learn about a related but different parametric distribution:
the binomial distribution
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Binomial Distribution

When we are interested in the number of successes in a series of
Bernoulli trials

Two parameters: θ and n

θ: Probability of success

n: number of Bernoulli trials included in Xi
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Trendy Dining: Binomial parameters

Suppose you are interested in the probability that exactly 30 people will
show up at the restaurant (i.e., 30 successes) when you accepted 34
reservations. You know that the proportion of reservation that actually
show up on a given night is .90.

What is θ?

What is n?
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Trendy Dining: Binomial parameters

Suppose you are interested in the probability that exactly 30 people will
show up at the restaurant (i.e., 30 successes) when you accepted 34
reservations. You know that the proportion of reservation that actually
show up on a given night is .90.

θ = .90

n = 34

We write X ∼ Bin(n, θ)

In this example, we have X ∼ Bin(34, .90)
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PMF of X ∼ Bin(n, θ)

The PMF of X is

n!
(n− x)!x!θ

x(1− θ)n−x (5)
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Trendy Dining: PMF

Let X be the number of “successes” from a series of n = 34 Bernoulli
trials with probability of success θ = 0.90. We have all of the parameters
for this Binomial random variable X, and we can use Equation 5 to derive
P (X = 30):

P (X = 30) = 34!
(34− 30)!30!0.9030(1− 0.90)34−30 = 0.19659

Robin Gomila | PSY 503 | Lecture 8: Random Variables I 39



Trendy Dining: PMF

Let X be the number of “successes” from a series of n = 34 Bernoulli
trials with probability of success θ = 0.90. We have all of the parameters
for this Binomial random variable X, and we can use Equation 5 to derive
P (X = 30):

P (X = 30) = 34!
(34− 30)!30!0.9030(1− 0.90)34−30 = 0.19659

Robin Gomila | PSY 503 | Lecture 8: Random Variables I 39



Trendy Dining: PMF using R

Use the dbinom() function

dbinom(x = 30,
size = 34,
prob = 0.9)

## [1] 0.1965932
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Trendy Dining: PMF using R

We can also use the function dbinom() to calculate the probability of
multiple values x. For instance, if we wanted the probability of each
possible outcomes, we could write:

x_vector <- 0:34
all_probs <- dbinom(x = x_vector,

size = 34,
prob = 0.9)
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Trendy Dining: PMF using R
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