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Uniform (discrete) distribution

A random variable X follows a uniform distribution if each of the possible
values of X has the same probability of occurrence.

As a result, a uniform discrete random variable X can be fully summarized
using one parameter k, which corresponds to the number of possible
values x that X can take on.

We write X ∼ Unif(k)
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PMF of X ∼ Unif(k)

PMF of X is

P (X = x) =
{ 1

C if x ∈ Supp(X)
0 otherwise (1)
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Example: Rolling a die

Let X be the outcome of a die roll.

X can take on k = 6 different values: {1, 2, 3, 4, 5, 6}.

As a result, for any value of X ∈ Supp(X): P (X = x) = 1
6
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Rolling a die: PMF using R

We can use the ddunif() function from the “extraDistr” package to
calculate the probability of different values xi and plot the PMF:

library(extraDistr)

uniform_x <- 0:7
uniform_pmf <- ddunif(x = uniform_x,

min=1,
max=6)

round(uniform_pmf, 3)

## [1] 0.000 0.167 0.167 0.167 0.167 0.167 0.167 0.000
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Uniform distribution in psychology studies

Psychologists have used the properties of the uniform distribution to
study honesty and lying

Procedure
Invite participants to the lab

Ask them to roll a fair die privately

Report the outcome of the die roll

Trick
Payoff structure

Make more money if die roll returned certain numbers (e.g., 5)
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Uniform distribution in psychology studies

Can’t tell who lied

Can tell if group lied, on average
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Example: Election Fraud

Uniform discrete distribution to study election fraud

Examine the distribution of the last digit of the vote counts reported
by the authorities

A fair vote count is just as likely to end in any digit

But people are bad are making up numbers: they tend to select some
digits more frequently than others

If last digit not uniformly distributed in some counties: red flag!

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 8



Election Fraud: Expected PMF of last digit
Let X be the last digit of the number of provincial vote counts at a given
election. We expect, X ∼ Unif(k = 10) and P (X = x) = 1

10 . That is,
the PMF of X should look like:

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 9



Election Fraud: Observed PMF of last digit
What would you conclude if instead, you observed:
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Election fraud: Reference

Beber, B., & Scacco, A. (2012). What the numbers say: A digit-based
test for election fraud. Political analysis, 20(2), 211-234.
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Many distributions

We will encounter additional common parametric distributions of discrete
random variables. Examples include the Poisson distribution, the geometric
distribution, and Benford’s Law (the distribution of first digits!!).

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 12



From PMFs to CDFs

We have described the distribution of random variables using
Probability Mass Functions (PMF)

Another useful function to describe random variables is called the
cumulative distribution function (CDF)
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Cumulative Distribution Function: Definition

The CDF of a random variable is the function F such that
F (x) = P (X ≤ x)

PMF tells us the probability of each possible outcome
e.g., probability that exactly 30 tables show up if you accepted 34
reservations

CDF tells us the probability that an outcome below a specific
outcome occurs

e.g., probability of less than 30 tables showing up if you accepted 34
reservations
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PDF vs. CDF
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Example: Trendy Dining in NYC
How do we calculate P (X > 30)?

For X the number of “successes” from a series of n = 34 Bernoulli
trials with probability of success θ = 0.90

We could use the binomial equation

n!
(n− x)!x!θ

x(1− θ)n−x (2)

and calculate by hand:

P (X > 30) = P (X = 31) + P (X = 32) + P (X = 33) + P (X = 34)

Tedious!

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 16



Example: Trendy Dining in NYC
How do we calculate P (X > 30)?

For X the number of “successes” from a series of n = 34 Bernoulli
trials with probability of success θ = 0.90

We could use the binomial equation

n!
(n− x)!x!θ

x(1− θ)n−x (2)

and calculate by hand:

P (X > 30) = P (X = 31) + P (X = 32) + P (X = 33) + P (X = 34)

Tedious!

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 16



Example: Trendy Dining in NYC
How do we calculate P (X > 30)?

For X the number of “successes” from a series of n = 34 Bernoulli
trials with probability of success θ = 0.90

We could use the binomial equation

n!
(n− x)!x!θ

x(1− θ)n−x (2)

and calculate by hand:

P (X > 30) = P (X = 31) + P (X = 32) + P (X = 33) + P (X = 34)

Tedious!

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 16



Example: Trendy Dining in NYC

Use the cumsum() function in R

Generate the complete PMF of X, then use the cumsum() function

library(tidyverse)

x_vector <- 0:34
all_probs <- dbinom(x = x_vector,

size = 34,
prob = 0.9)

cdf_x <- cumsum(all_probs)
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Example: Trendy Dining in NYC

We immediately see that P (X ≤ 30) = 0.446, which implies that

P (X > 30) = 1− 0.446 = 0.554
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Summarizing Discrete Random Variables

PMFs and CDFs are very useful tools to summarize information from
rvs.

Many other ways to summarize random variables!
e.g., mean, median, standard deviation, etc.
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Arithmetic mean

You have calculated the arithmetic mean plenty of times in your life
Add up a series of numbers (i.e., grades) and divide by the total
number of grades

Given a list of numbers x1, x2, ..., xn, we define the arithmetic mean
as:

µx = 1
n

n∑
j=1

xj (3)

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 20



Arithmetic mean

You have calculated the arithmetic mean plenty of times in your life
Add up a series of numbers (i.e., grades) and divide by the total
number of grades

Given a list of numbers x1, x2, ..., xn, we define the arithmetic mean
as:

µx = 1
n

n∑
j=1

xj (3)

Robin Gomila | PSY 503 | Lecture 9: Random Variables II 20



Weighted mean

Some numbers (e.g., grades) may have more weight than others

For a list of numbers x1, x2, ..., xn and a list of weights
p1, p2, ..., pn, the weighted mean is defined as:

weighted-mean(x) =
n∑

j=1
xjpj (4)

in which the weights are non-negative numbers that add up to 1

Arithmetic mean is a special case
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Expectation
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Expectation of random variables

Random variables are defined by their PMF / CDF
NOT by a series of numbers that we can add

We talk about the expectation or expected value of a rv
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Definition

Let X be a discrete random variable.

The expectation of X is defined by:

E[X] =
n∑

j=1
xjP (X = xj) =

n∑
j=1

xjp(xj) (5)

The expected value of a random variable is a function of its PMF
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Expectation of Binomial distribution

We have X ∼ Bin(34, 0.90)

What is the expectation of X?
If I draw a very large number of outcomes from this distribution, what
will the mean value of these outcomes be?
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Expectation of Binomial distribution

Based on the PMF of X (see trendy dining slides)

E[X] =
n∑

j=1
xjP (X = xj)

= 0× 0.0 + 1× 0.0 + 2× 0.0 + ...+ 23× 0.0
+ 24× 0.001 + 25× 0.004 + 26× 0.012 + 27× 0.031
+ 28× 0.070 + 29× 0.131 + 30× 0.197 + 31× 0.228
+ 32× 0.193 + 33× 0.105 + 34× 0.028

= 30.6
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Expectation of rvs in R

Using simulations
Draw a large number of observations from a distribution

Take the mean of these values
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Expectation of rvs in R

binom3490_draws <- rbinom(n = 100000,
size = 34,
prob = .90)

mu_binom3490 <- mean(binom3490_draws)

round(mu_binom3490, 1)

## [1] 30.6
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Expectation of rvs in R

binom3450_draws <- rbinom(n = 100000,
size = 34,
prob = .50)

mu_binom3450 <- mean(binom3450_draws)

round(mu_binom3450, 1)

## [1] 17
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From expectation to PMF?

Does the expectation of a rv tell us anything about its PMF?

NO!

Expectation is a number that informs us about the centrality of a rv

Expectation tells you nothing about how often X = 17 will occur
Actually, 17 does not even have to be on the support of X

Expectation does not tell you how often you will draw values very
close or very far from 17
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Illustration

This is why rvs are often described with a measure of centrality and a
measure of spread.
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Properties if Expectations

E[c] = c

E[X + c] = E[X] + c

E[X + Y ] = E[X] + E[Y ]

E[cX] = cE[X]
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Variance of random variables

The variance tells us something about the average distance between X
and E[X]. For this reason, the variance of a random variable is defined as
a function of its expectation.
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Variance: Definition

V[X] = E
[
(X − E[X])2

]

Often expressed in the following terms

V[X] = E[X2]− E[X]2
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Proof

V[X] = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E

[
X2]− 2E

[
XE[X]

]
+ E

[
E[X]2

]
= E

[
X2]− 2E[X]E[X] + E[X]2

= E
[
X2]− 2E[X]2 + E[X]2

= E
[
X2]− E[X]2
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Properties

V[X + c] = V[X]

V[aX] = a2V[X]

V[X] ≥ 0
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Standard Deviation

The standard deviation of a random variable X is defined as

σX =
√
V[X]

Generally easier to interpret than the V[X]
Same unit as the X.

σX corresponds to the average distance between X and E[X]
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Skewness

Distributions can be skewed
i.e., non-symmetrical

If Skew[X] 6= 0, the probability distribution of X is not symmetrical
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Positively skewed rvs (or right skewed)
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Negatively skewed rvs (or left skewed)
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Formal definition

Skew[X] = E
[
X − E[X]

V[X]

]
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Centrality and Skewness

When rvs are skewed, expectation may not be the most relevant
measure of centrality

Expectation influenced by presence of extreme values at in the tail
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Illustration: Students’ grades
Suppose that you are designing in an intervention aiming at improving
students’ grades in a particularly difficult course

Let X be students’ grade at a given test with the following PMF:

p(x) =



2
10 if x = 38
2
10 if x = 39
4
10 if x = 40
2
10 if x = 100
0 otherwise

(6)

80% of the students obtain a grade between 38 and 40 out 100,
whereas 20% of the students get 100

E[X] = 52.5: not as useful, even misleading!
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Median

The median of a random variable X is a number such that, if we were to
repeat the random phenomenon on which X is defined many many many
times, 50% of the times we would observe an outcome smaller than the
median and 50% we would observe an outcome larger than the median.
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Mode

The mode is the most typical or common realization of a random variable.
It corresponds to the “peak” of the probability distribution of a random
variable.
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