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When the outcome is binary, psychologists often use nonlinear modeling strategies such as logit or probit.
These strategies are often neither optimal nor justified when the objective is to estimate causal effects of
experimental treatments. Researchers need to take extra steps to convert logit and probit coefficients into
interpretable quantities, and when they do, these quantities often remain difficult to understand. Odds
ratios, for instance, are described as obscure in many textbooks (e.g., Gelman & Hill, 2006, p. 83). I draw
on econometric theory and established statistical findings to demonstrate that linear regression is
generally the best strategy to estimate causal effects of treatments on binary outcomes. Linear regression
coefficients are directly interpretable in terms of probabilities and, when interaction terms or fixed effects
are included, linear regression is safer. I review the Neyman-Rubin causal model, which I use to prove
analytically that linear regression yields unbiased estimates of treatment effects on binary outcomes.
Then, I run simulations and analyze existing data on 24,191 students from 56 middle schools (Paluck,
Shepherd, & Aronow, 2013) to illustrate the effectiveness of linear regression. Based on these grounds,
I recommend that psychologists use linear regression to estimate treatment effects on binary outcomes.
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effects

Psychology research often targets binary outcomes, commonly
defined as dependent variables that can take two possible values:
0 and 1. For instance, psychologists have explored the validity of
people’s intuitive judgments (Kahneman & Frederick, 2002), the
circumstances that lead them to violate or conform to social norms
(Cialdini, Reno, & Kallgren, 1990; Gomila & Paluck, 2020), the
determinants of dropping out of therapy (Wierzbicki & Pekarik,
1993), the predictors of college attendance (Brumley, Russell, &
Jaffee, 2019), or the influence of defendants’ and victims’ race on
the likelihood that the defendant receives a death sentence (Eber-
hardt, Davies, Purdie-Vaughns, & Johnson, 2006).

Psychology researchers rely extensively on nonlinear models
such as logit and probit when the outcome is binary, although
advances in statistics and methods have established that this is
often not optimal, justified or appropriate (Angrist & Pischke,
2009; Freedman, 2008; Hellevik, 2009; Woolridge, 2002). In this

article, I summarize the relevant literature on regression analysis of
binary outcomes, and I use analytical, simulation, and empirical
approaches to demonstrate the effectiveness of simple and multiple
linear regression to estimate treatment effects on binary out-
comes.1 This is true independently of the sample size and distri-
bution of the binary outcome variable (Judkins & Porter, 2016),
and in the context of experimental and quasi-experimental de-
signs.2

There are several reasons to prefer linear regression to nonlinear
models such as logit and probit when the outcome is binary. Linear
regression allows for direct interpretation of the coefficients as
probabilities, and is safe when the model includes fixed effects or
interaction terms. On the contrary, logit and probit coefficients are
not immediately interpretable. Converting them into probabilities
requires the additional complexity of methods such as marginal
standardization, prediction at the means, or prediction at the modes
(Angrist & Pischke, 2009; Freedman, 2008; Muller & MacLehose,
2014). Furthermore, nonlinear models such as logit and probit
become unsuitable in the presence of interaction terms or fixed
effects (i.e., nested models) (Beck, 2018; Freedman, 2008).

First, I review the arguments commonly used to support the use
of nonlinear modeling approaches to analyze binary outcomes, and
discuss the relevance of these arguments for psychologists. Sec-
ond, I examine the advantages of using linear regression to esti-

1 When the outcome is binary, linear regression is commonly referred to
as the linear probability model.

2 For multiple linear regression models with binary outcomes, it is best
to use covariates that are categorical and sparse (Woolridge, 2002). This is
generally the case of the typical covariates used by psychologists (e.g.,
gender, religiosity, or income 5-point scales, etc.).
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mate causal effects of any variables with any distribution on binary
outcomes. Third, I introduce the framework of potential outcomes
through the Neyman-Rubin causal model to prove analytically that
linear regression yields unbiased estimates of causal effects of
treatments, even when the outcome is binary. Finally, I conduct
analyses on simulated data as well as existing data to establish
linear regression as a simple, flexible and powerful analysis strat-
egy when the outcome is binary. The advantages of using linear
instead of logistic regression to analyze experimental data with
binary outcomes are summarized in Table 1.

Arguments Supporting Nonlinear Approaches

Nonlinear Models Are Necessary in the Context of
Prediction

The main argument in favor of nonlinear models such as logit or
probit to analyze binary outcomes is that these models constrain
predictions between 0 and 1. That is, contrary to ordinary least
squares (OLS), these methods prevent the analyst from making
impossible forecasts, such as predicting that the probability to
observe an event is less than 0 or greater than 1. For instance,
unlike logit or probit, linear regression could lead one to predict
that the probability that an individual commits a crime in their
lifetime is 1.2, or �.04. As a result, nonlinear modeling strategies
often constitute the only valid option for researchers interested in
modeling the data to predict the probability of occurrence of binary
variables. This is often the case in other disciplines such as
biomedical research or finance.

The Presence of Predictions Outside of the Interval
Unit Leads to Biased and Inconsistent Estimates of
Parameters

A different but related argument in favor of nonlinear models is
that, specifically because of predictions outside of the interval unit
of the outcome variable, OLS coefficients may be biased and
inconsistent in the case of binary outcomes. Horrace and Oaxaca
(2006) demonstrated that bias and inconsistency of the estimator
increase with the proportion of predicted probabilities that fall
outside of the support, and recommend the use of logit or probit
models.

Binary Outcomes Impose Heteroskedasticity in
Violation of OLS Assumptions

One of the assumptions of OLS regression is homoskedasticity,
which holds if the variance of the error term is the same for all
values of X. Mathematically, Var(�|X) � �2, in which � is a
constant. When this OLS assumption is violated, errors are con-
sidered heteroskedastic, which biases the standard errors of the
OLS estimates because too much weight is given to some portion
of the data.

The presence of heteroskedasticity in the context of binary
outcomes can be understood by looking at the variance formula. If
we regress a binary variable Y on k variables X1,X2,X3, . . . ,Xk, the
conditional mean and variance of Y are expressed below, and
Equation 2 implies that we observe heteroskedasticity unless the
coefficients �0, �1, . . . , �k are all equal to 0.

E[Y|X] � �0 � �1x1 � �2x2 � ... � �kxk (1)

Var(Y|X) � X�(1 � X�) (2)

Relevance of These Arguments for Psychology
Research

Prediction Versus Explanation in Psychology Research

For the most part, psychology research has focused on explain-
ing causal mechanisms that give rise to psychological and behav-
ioral outcomes, not on making predictions about these outcomes
(Yarkoni & Westfall, 2017). As a result, for most psychologists,
the question of whether using linear regression is appropriate when
outcomes are binary becomes: to what extent do out-of-bound
predictions from linear regression bias estimates of causal effect?
Broadly speaking, the answer to this question is that psychologists
do not need to worry about out-of-bound predictions. To under-
stand why, I now turn to examine different study designs.

The Case of Simple Regression in Experimental
Designs

To estimate causal effects of treatments on outcomes, psychol-
ogy researchers mostly use experimental designs, in which partic-
ipants are randomly assigned to a treatment versus control condi-

Table 1
Comparison of the Attributes of Linear and Logistic Regression for the Analysis of Experimental Data

Desirable attributes of the analytic strategy Linear regression Logistic regression

Overall interpretability of coefficients or commonly reported estimates Yes No
Provides immediate estimate of the average treatment effect (ATE) in terms of probability of change Yes No
Interpretability of interaction terms Yes No
Appropriate for models including fixed effects Yes No
Predictions constrained to the interval unit [0, 1] Yesa Yes
Unbiasedness Yes Yes
Consistency Yes Yes
Robustness to heteroskedasticity Yesb Yes

Note. The content of this table applies to both simple and multiple regression analysis.
a As discussed in more details in this article, predictions outside the interval unit sometimes occur in special cases of multiple linear regression: when models
are not saturated. This is the case of models that include continuous covariates (e.g., age). b Using robust standard errors.
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tion. In this framework, researchers generally use simple linear
regression of a binary outcome Yi on a treatment Di.

Yi � �0 � �1Di � � (3)

in which i denotes individuals. In the context of Equation 3, the
average treatment effect (ATE)3 is equal to �1, directly expressed
in terms of probabilities. In the context of Equation 3, which
regresses a binary outcome on a binary treatment, linear regression
cannot possibly yield out-of-bound predictions, and always pro-
vides an unbiased estimate of the causal effect Di on Yi (Angrist &
Pischke, 2009). The analytical proof of this argument is provided
later in this article.

Linear Regression Analysis Including Discrete
Covariates

Psychologists typically include covariates (e.g., gender, religi-
osity, ethnicity) in their regression for two possible reasons. In
experimental studies, the presence of covariates increase statistical
power and precision (Green & Aronow, 2011; Maxwell & Dela-
ney, 2004). In the context of quasi-experimental designs (i.e., in
the absence of random assignment to the treatment condition) such
as natural experiments, covariates may be included in the linear
regression analysis to account for preexisting differences between
groups (Shadish, Cook, & Campbell, 2002, p. 166–170), allowing
to obtain approximately unbiased estimates of causal effects.

Multiple linear regression analysis aiming to estimate causal
effects of binary treatments on binary outcomes are perfectly
suited, as long as covariates are discrete and take on only few
values (Woolridge, 2002, p. 456). It is noteworthy that when
models are saturated,4 which is the case of the simple linear
regression model described in Equation 3 as well as fully inter-
acted models with binary covariates, their underlying structure is
inherently linear5 (Woolridge, 2002). This implies that for satu-
rated models, the linear regression estimator is unbiased and con-
sistent, and predicted values are never out-of-bounds.

Linear Regression Analysis Including Continuous
Covariates

The underlying structure of models that include continuous
covariates, commonly referred to as the conditional expectation
function (CEF), is often nonlinear. This raises the question of the
pertinence of linear modeling strategies in these circumstances. As
pointed out by Woolridge (2002), linear regression analysis usu-
ally provides a good approximation of the effects of any variable
X on the binary outcome of interest near the center of the distri-
bution of X.

Undeniably, OLS will not approximate the CEF of an unknown
nonlinear CEF. However, there is no reason to believe that logit or
probit models constitute the correct approximation of a given CEF.
Analysts willing to model nonlinear CEFs in the context of binary
outcomes may use clustering methods such as Bernoulli mixture
models. These unsupervised learning techniques can be powerful,
but are beyond the scope of this article.

Violation of the Homoskedasticity Assumption

As already mentioned, binary outcomes impose heteroskedas-
ticity, which constitute a violation of one of the OLS assumptions.

First, as pointed out by Angrist and Pischke (2009), the OLS
assumption of homoskedasticity is generally violated in the real
world, even in the case of nonbinary outcomes (Angrist & Pischke,
2009, p. 46). The implications of the homoskedasticity assumption
are related to the calculation of standard errors. If the variance of
the error term ε differs for different values of X, regular standard
errors overweight some portions of the data. In order to resolve this
common issue (Angrist & Pischke, 2009), researchers have in-
creasingly used heteroskedasticity-robust standard errors, which
are valid even in the context of arbitrary heteroskedasticity (Wool-
ridge, 2002, p. 56).

Reasons to Prefer Linear Regression Analysis

Target Estimands and Interpretability

When the target quantity of interest, also referred to as estimand
(Rubin, 1974, 1977), is the average causal effect of a treatment
variable on a binary outcome, linear regression is the optimal
strategy. OLS coefficients allow for a direct interpretation of the
treatment effect in terms of the percentage point change in the
probability to observe Yi � 1. For instance, if Equation 3 yields
�1 � .01, we immediately understand that the treatment caused an
increase of 1 percentage point in the probability to observe Yi � 1.

The coefficients of nonlinear models are never directly inter-
pretable. Logistic regression coefficients, for instance, are on the
log-odds scale,6 which implies that they are interpretable in terms
of signs and statistical significance, but not effect size. As a result,
they are often expressed in terms of odds ratios (ORs), which are
also difficult to decipher. As described by Hellevik (2009) “an
odds is the ratio between the probability of having a certain value
on a variable, and the probability of not having this value . . . what
the odds ratio shows, is the ratio between odds, not between
proportions” (Hellevik, 2009, p. 66). This definition makes it clear
that communicating study results in terms of ORs makes their
interpretation complex. As pointed out by King and Zeng (2002),
“the disadvantage of odds ratios is understanding what it means . . .
we have found no author who claims to be more comfortable
communicating with the general public using an odds ratio” (p.
1411). Researchers can take more advanced analytical steps to
convert logistic regression coefficients into probabilities. These
extra analyses, commonly termed “first differences,” include mar-
ginal standardization, prediction at the means, or prediction at the
modes, and imply additional assumptions (for a detailed treatment
of the question, see Gelman & Hill, 2006; Muller & MacLehose,
2014).

Making the decision to use logistic regression instead of linear
regression, both with and without these additional steps, comes
with costs. When researchers omit these additional steps, they

3 The average treatment effect is also referred to as the average causal
effect.

4 A model in which the dependent variable is regressed on a set of binary
variables is saturated. Researchers can “saturate their model” by turning
any categorical variables that have more than two values (e.g., ethnicity,
education) into a set of dummy variables.

5 In the case of saturated models, the conditional expectation function of
the parameter is linear.

6 Probit regression coefficients are on the probit scale.
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inevitably place the focus on statistical significance and neglect the
importance of effect sizes. This limits one’s ability to understand
the magnitude of the effect, the practical and theoretical relevance
of the results, and use the study for power analyses or meta-
analyses in the future (Cohen, 1990; Fritz, Morris, & Richler,
2012). When researchers take these additional steps they impose
more restrictions and assumption on the results than with linear
regression.

(Mis)conception of Interaction Effects in Nonlinear
Models

In nonlinear models such as logit and probit, interaction effects
are often misinterpreted because they are conditional on other
independent variables (Ai & Norton, 2003; Simonsohn, 2017).
This implies that the size and the sign of a given interaction effect
from a logistic regression generally varies with the values of other
independent variables (Ai & Norton, 2003; Simonsohn, 2017). As
a result, the sign of interaction coefficients from nonlinear models
does not necessarily indicate the sign of the actual interaction
effect of interest and their statistical significance cannot be tested
with a simple t test (as is the case in linear regression). In fact, their
statistical significance often depends on whether the interaction is
conceptualized in terms of probabilities, log odds, or ORs (Ai &
Norton, 2003). The methods to deal with these issues are debated
and remain unclear (Ai & Norton, 2003; Greene, 2010).

Nonlinear Models Do Not Perform Well in the
Presence Fixed Effects

Researchers usually include fixed effects in regression analyses
to account for the nested nature of the data, such as when students
are nested within schools, citizens are nested within community, or
workers are nested within companies (e.g., Blair, Littman, &
Paluck, 2019; McNeish & Kelley, 2019; Paluck, Shepherd, &
Aronow, 2016). Nonlinear models such as logit perform poorly in
the presence of fixed effects.7 A major issue is that logit models
drop all the observations that do not vary in the outcome variable
(for an analytical treatment of the question, see Andersen, 1973;
Hsiao, 1992). Rodriguez and Goldman (1995) used large numbers
of simulations to demonstrate that estimates from logit models
with fixed effects are sometimes as biased as estimates from
models that ignore the hierarchical structure of the data, which is
not the case of linear regression. The greater the number of fixed
effects included in the model, the better linear regression fares
compared to nonlinear models (Beck, 2018).

It is noteworthy that using logistic regression in the context of
nested models with binary outcomes may, under very specific
circumstances, be effective. That is, researchers have to use the
right (nontraditional) model specifications, such as the Chamber-
lain’s conditional logit (CLOGIT) estimator, which is consistent
under some conditions (Beck, 2018). However, using these alter-
native specifications comes with downsides. The CLOGIT estima-
tor targets a different quantity of interest (estimand), is commonly
biased for the ATE,8 and because it does not allow to express
outcomes in terms of probabilities, results are even more difficult
to interpret than traditional logit models. For these reasons, it is
clear that using linear regression should generally be chosen in the
context of nested models.

Analytical Evidence of the Unbiasedness and
Consistency of the OLS Estimator

Does the Fact That an Outcome Is Binary Have any
Implications for Causal Analysis of Experimental
Data?

I now describe the causal relationship between a variable Y and
a treatment D using the Neyman-Rubin causal model (Neyman,
1923; Rubin, 1974, 1977). The Neyman-Rubin causal model is a
powerful framework, often used to describe estimation strategies
of causal effects in terms of counterfactuals or potential outcomes.
Let Y1i denote the outcome if individual i is treated and Y0i the
outcome if the same individual i is not treated. The average effect
�i of a treatment Di on an outcome Yi may be different from an
individual to another, and can be expressed as:

�i � E[Y1i|Di � 1] � E[Y0i|Di � 1] (4)

Note that in Equation 4 the term E[Y1i|Di�1] is observed, but
the term E[Y0i|Di�1] is unobserved when Di � 1. In this frame-
work, E[Y0i|Di�1] is considered an unobserved counterfactual
average, assumed to be meaningful. The ATE �i is often expressed
as the effect of the treatment on the treated in the following way:

�i � E[Y1i � Y0i|D � 1] (5)

Since E[Y0i|Di�1] is unobserved, the effect of the treatment on
the treated can generally not be identified by comparing the
outcomes of Di. Instead, �i is derived by comparing treated and
untreated individuals, plus a bias term:

E[Yi|Di � 1] � E[Yi|Di � 0] � E[Y1i|Di � 1] � E[Y0i|Di � 0]
�E[Y1i|Di � 1] � E[Y0i|Di � 1] � E[Y0i|Di � 1] � E[Y0i|Di � 0]
�E[Y1i � Y0i|Di � 1] � �E[Y0i|Di � 1] � E[Y0i|Di � 0]�
Ç

Bias

(6)

The Average Causal Effect of the Treatment in
Experiments Is Unbiased and Consistent

In experimental designs, Di and Y 0i are independent. Therefore,
the ATE �i can be expressed as:

�i � E[Y1i � Y0i|Di � 1] � E[Y1i � Y0i] (7)

In this case, E[Y1i�Y0i] is usually referred to as the uncondi-
tional causal effect of the treatment. This demonstrates that in the
experimental framework, the fact that Yi is binary has no implica-
tions, that is, the average causal effect of treatment on a binary
outcome is unbiased and consistent. When Yi is binary, the differ-
ence in means E[Y1i�Y0i] corresponds to a difference in probabil-
ities.

7 For a recent discussion of the advantages and limitations of fixed
effects versus mixed effects models, see McNeish and Kelley (2019).
Researchers interested in learning more about using logistic regression
with random effects may consult Gibbons and Hedeker (1997); Conaway
(1990) or Larsen, Petersen, Budtz-Jorgensen, and Endahl (2000) as a
starting point.

8 The CLOGIT estimator is biased for the average treatment effect (or
any other marginal effect) when effects vary by stratum.
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Now in nonexperimental settings, in which identification is
based on a selection on observables rather than random assign-
ment, causal inference is based on the assumption that Y0i and Di

are independent, conditional on Xi. In this context, effects must be
estimated by conditioning on Xi. We express the effect of treatment
as:

E[Y1i � Y0i|Di]
�E�E[Y1i|Xi, Di � 1] � E[Y0i|Xi, Di � 1]|Di � 1�

�� �E[Y1i|Xi, Di � 1] � E[Y0i|Xi, Di � 0]�

� P(Xi � x|Di � 1)dx

(8)

In this case, linear regression can be used as a smoothing tool
because the population regression coefficients are the best linear
approximation to E[Yi|Xi,Di], independently of the distribution of
Yix (Angrist, 2001; Goldberg, 1991). As pointed out by Angrist
(2001), “with discrete covariates and a saturated model for Xi, the

additive model can be thought of as implicitly producing a
weighted average of covariate-specific contrasts” (Angrist, 2001,
p. 7).

Comparison of Linear and Logistic Regression Results
Using Simulation

Simulation of Population Data

I generate potential outcomes for six different binary variables
(Y01i,YY02i, . . . ,Y06) with different baseline probabilities, that is,
different probabilities of success P(Y0�1). These variables consti-
tute the binary outcomes of interest for the control condition, and
have baseline probabilities varying from 0 to.90 (Figures 1 and 2).
I also generate the potential outcomes for the treatment condition:
Y11i,Y21i, . . . Y61i. Finally, I generate two covariates X1 and X2. X1

Figure 1. Illustration of unbiasedness and consistency of the simple linear and logistic regression estimators
of the average treatment effect (ATE). The red line indicates the ATE (� � .08) in the simulated population. The
left-side panel displays the regression estimates for four different sample sizes (N1 � 50, N2 � 100, N3 � 250, and
N4 � 500) and 6 different baseline probabilities (P1�Yi � 1� � 0, P2�Yi � 1� � .15, P3�Yi � 1� � .30, P4�Yi �

1� � .50, P5�Yi � 1� � .75, P6�Yi � 1� � .90). For each sample size and baseline probability, the figure displays
estimates from 1,000 randomly drawn samples. See the online article for the color version of this figure.
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is a binary variable that indicates whether participants have a
college degree, and X2 is a discrete variable on a 5-point scale that
indicates the level of religiosity of participants. Simulations are
conducted using Declare Design (Blair, Cooper, Coppock, &
Humphreys, 2019), and the data generation process for the binary
outcomes is described for each simulation below.

Estimation of the ATE in Experiments

In this simulation study, the randomized treatment has an aver-
age effect of.08 (i.e., 8 percentage points) on the outcome. I
randomly select samples of size N1 � 50 to N4 � 500, randomly
assign individuals to the treatment or control condition, put to-
gether a variable Y� that includes the observed outcomes of each
individual, and estimate the average causal effect of the treatment
using the following simple linear and logistic regression models:

Yi � �0 � �1Di � �

P(Yi � 1) � logit�1(�0 � �1Di � �)

The distribution of the ATE, illustrated in Figure 1, demon-
strates that both strategies perform equally. That is, both the linear
and logistic regression estimators are unbiased and consistent for
the ATE.

Estimation of the ATE in Quasi-Experiments

I now consider the multiple regression framework, in which the
analyst includes two covariates: the binary variable college degree
(X1) and the discrete variable religiosity (X2). For a conservative
approach, I generate the different potential outcomes Y0 and Y1

from a logit model using both covariates, which yields an average
treatment effect of .38. Then, I draw random samples from this

Figure 2. Illustration of unbiasedness and consistency of the multiple linear and logistic regression estimators
of the average treatment effect (ATE). The red line indicates the ATE (� � .38) in the simulated population. The
left-side panel displays the regression estimates for four different sample sizes (N1 � 50, N2 � 100, N3 � 250,
and N4 � 500) and six different baseline probabilities (P1�Yi � 1� � 0, P2�Yi � 1� � .15, P3�Yi � 1� �

.30, P4�Yi � 1� � .50, P5�Yi � 1� � .75, P6�Yi � 1� � .90). For each sample size and baseline probability, the
figure displays estimates from 1,000 randomly drawn samples. See the online article for the color version of this
figure.
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dataset, and randomly assign individuals from the original dataset
to the treatment versus control conditions. I then estimate the ATE
using the following multiple regression models. For the logit
model, covariates are held at their mean level.

Yi � �0 � �1Di � �2X1 � �3X2 � �

P(Yi � 1) � logit�1(�0 � �1Di � �2X1 � �3X2 � �)

The results, illustrated in Figure 2, demonstrate that both esti-
mators are unbiased and consistent for the ATE.

Comparison of Linear and Logistic Regression Results
Using Existing Data

Description of the Dataset

I use data from a field experiment examining the impact of an
anticonflict intervention in 56 New Jersey middle schools (Paluck,
Shepherd, & Aronow, 2013). The dataset includes survey and
administrative data on the entire student population of each school,
which includes a total of 24,191 students. The 56 schools involved
in the study were assigned to blocks of two before being randomly
assigned (within blocks) to the control or treatment condition. The
researchers deployed a year-long intervention aiming to reduce
conflict between students in all 28 treatment schools assigned to
the treatment condition. Paluck et al. (2013) collected survey data
on all 24,191 students during the school year. In addition, each
school provided the researchers with data describing, for each
student, instances of disciplinary events such as bullying or other
types of peer conflict.

Selection of the Variables and Analytic Strategy

I select a total of 12 different binary variables with varying
distributions from this dataset. For each outcome variable, I report
the results of linear and logistic regression. Specifically, in addi-
tion to reporting the raw regression coefficients and associated p
values, I report the estimates that researcher most commonly report
for each analytic strategy. That is, I report ORs for logistic regres-
sion and the ATE in probabilities for linear regression. These
different statistics are derived for the following two models:

Yi � �0 � �1Di � � (9)

P(Yi � 1) � logit�1(�0 � �1Di � �) (10)

in which i denotes students. Yi is the outcome variable, and εi is the
student error term.

The analyses described in Equations 9 and 10 pool all observa-
tions, ignoring the nested structure of the data into blocks. For this
reason, I subsequently include fixed effects of schools into these
linear and logistic regression analyses in the following way:

Yi � �0 � �1Di � 	s[i] � � (11)

P(Yi � 1) � logit�1(�0 � �1Di � 	s[i] � �) (12)

in which i denotes students and s[i] denotes schools. Yi is the
outcome variable, �s[i] is the school fixed effects, and εi is the
student error term.

The comparison between the models from Equations 11 and 12
constitutes an empirical test of the simulation-based findings of

Rodriguez and Goldman (1995), which suggest that in the presence
of fixed effects, logistic regression performs poorly in the presence
of fixed effects.

Linear and Logistic Regression Results

The results of these two separate comparisons between linear
and logistic regression analysis are displayed in Table 2 (models
without fixed effects) and Table 3 (models with fixed effects). In
both tables, logistic and linear regression analyses produce com-
parable p values, which indicate that the statistical significance of
the findings is not impacted by the selected analytic strategy. The
main difference between logistic and linear regression lies in the
interpretability of the coefficients or the estimate that researchers
typically report.

In Tables 2 and 3, the coefficients and estimates from the
linear regression analyses are the exact same and correspond to
the average effect of the treatment on each variable, expressed
in terms of probability of change. This illustrates how linear
regression outputs immediately provide interpretable estimates
of the ATE.

In contrast, the logistic regression coefficients are expressed
in log of ORs and the estimates, calculated by exponentiating
these coefficients, is expressed in ORs. As previously dis-
cussed, log of ORs and ORs are difficult to interpret. For
instance, the estimated OR of 1.13 for Variable 1 indicates that
the odds (which is itself a ratio) for participants exposed to
treatment are 1.13 times higher than the odds (another ratio) for
participants assigned to the control condition. The cumbersome
character of ORs is one reason why ORs make it difficult to
assess the theoretical and practical relevance of effects. Another

Table 2
Linear and Logistic Regression Results for Models With Fixed
Effects, for 12 Variables From a Large Experimental Dataset

Coefficient Estimate p value

Variable no. OLS Logit OLS (ATE) Logit (OR) OLS Logit

Var1 0.03 0.17 0.03 1.19 0.00 0.00
Var2 �0.01 �0.03 �0.01 0.96 0.45 0.45
Var3 0.01 0.08 0.01 1.08 0.18 0.18
Var4 0.00 0.02 0.00 1.02 0.64 0.64
Var5 �0.01 �0.06 �0.01 0.95 0.11 0.11
Var6 �0.01 �0.06 �0.01 0.94 0.11 0.11
Var7 �0.00 �0.00 �0.00 1.00 1.00 1.00
Var8 0.01 0.11 0.01 1.11 0.02 0.02
Var9 0.02 0.10 0.02 1.11 0.01 0.01
Var10 0.01 0.04 0.01 1.04 0.17 0.17
Var11 �0.03 �0.14 �0.03 0.87 0.00 0.00
Var12 0.00 0.02 0.00 1.02 0.46 0.46

Note. N � 24,191. The two columns under Coefficient display the raw
regression coefficients from the linear (ordinary least squares [OLS]) and
logistic (logit) regression analyses. Whereas linear regression analysis
yields the average treatment effect size in terms of probabilities, logistic
regression analysis yields the log of (ORs). The two columns under
Estimate display the estimates that researchers typically report after using
linear and logistic regression. For linear regression, these estimates corre-
spond to the average treatment effect (ATE), whereas for logistic regres-
sion, these estimates are generally ORs. The two columns under p value
displays the p values generated by linear and logistic regression for each
variable.
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reason is that the relevance of effects expressed in OR is
conditional on the mean (i.e., probability of 1’s) of the depen-
dent variable for the control group. Specifically, an OR of 1.13
can correspond to a very small effect if the mean of the
dependent variable for the control group is tiny, or to a larger
effect if the mean of the dependent variable for the control
group is larger. This implies that a same OR can translate into
different Cohen’s d values, depending on the probability of 1’s
of the dependent variable for control group participants (Chen,
Cohen, & Chen, 2010).

As displayed in Figure 1 and 2, it is possible to derive the
ATE from logistic regression. And doing so in the context of
the analyses displayed in Tables 2 and 3 does yield the exact
same estimate of the ATE as linear regression. Researchers who
would like to take the extra steps to calculate the ATE in terms
of probability of change may use the predict or invlogit
functions in R.9 The result that the logistic and linear regression
estimators perform equally in this particular setting should not
necessarily be generalized to other settings. This dataset in-
cludes a small number clusters (i.e., 14), and a large number of
observations (i.e., 24, 191 students). The large number of
observations in each cluster explains the effectiveness of the
logistic regression estimator. Analysts should expect that the
performance of logit decreases as the ratio of observations to
clusters decreases.

Summary and Conclusions

Psychologists have a long history of using experimental designs,
in the lab and in the field, to explain causal effects of treatments.

In the presence of binary outcomes, linear regression analysis is
the most powerful, flexible, and the simplest strategy. This is the
case for models with and without covariates, and in the presence of
adjustments such as interactions or fixed effects. Furthermore, past
research suggests that nonlinear models sometimes perform poorly
in the presence of fixed effects (though it is not the case in the
present analyses of empirical data), and that researchers are often
misled by interaction terms from logit and probit regression anal-
yses.

In the presence of binary outcomes, the predominance of
nonlinear modeling analysis strategies such as logit and probit
in the literature may have negative implications for the field.
First, researchers sometimes only report logit or probit regres-
sion coefficients. These coefficients are not interpretable, which
shifts the focus of interest toward statistical significance, and
away from actual effect sizes. Second, researchers often inter-
pret the results of logistic regression in terms of odds-ratios,
which are undeniably difficult to interpret. This, once again,
focuses the attention onto p values, and denies the practical and
theoretical importance of effect sizes. On the contrary, linear
regression yields results that are immediately interpretable in
terms of probability of change, which is the most desirable way
to communicate effect sizes.

The analyses of empirical data reported in this article, using
logistic and linear regression, illustrate the effectiveness of linear
regression to examine causal effects of treatments on binary out-
comes. Average causal effects as well as p values derived from
both methods were the exact same (up to two decimal places). This
result is aligned with past research on the correspondence between
the p values of logistic and linear regressions analyses for sample
sizes varying between 200 and 2,500. Hellevik (2009) demon-
strated that the correlation between the two sets of p values was
.9998, and that 90% of time, the difference between the p values
was less than.005. All in all, choosing linear regression over logit
or probit does not involve any tradeoff in terms of statistical
significance.

Based on these grounds, I recommend that psychology re-
searchers use linear regression to estimate causal effects of
treatments on binary outcomes. This should become the default
practice, since there is no apparent reason to use more complex,
nonlinear modeling strategies. In the specific case of multiple
regression analysis in which the model is not saturated (e.g.,
when the model includes continuous covariates), different an-
alytic strategies may produce different results. In these circum-
stances, I recommend that researchers supplement their linear
regression analysis with a sensitivity analysis (for a tutorial, see
Thabane et al., 2013) to assess the robustness of the findings to
other analytic strategies. In their sensitivity analysis, research-
ers may analyze the data using, for instance, logit or probit
models, or clustering methods such as Bernoulli mixture mod-
els.

9 All of the analyses reported in this article were computed in R. The R
codes can be found on the Open Science Framework (OSF): https://osf.io/
ugsnm/.

Table 3
Linear and Logistic Regression Results for Models With Fixed
Effects (14 Clusters), for 12 Variables From a Large
Experimental Dataset

Coefficient Estimate p value

Variable no. OLS Logit OLS (ATE) Logit (OR) OLS Logit

Var1 0.02 0.12 0.02 1.13 0.00 0.00
Var2 �0.01 �0.03 �0.01 0.96 0.44 0.44
Var3 0.00 0.04 0.00 1.04 0.49 0.49
Var4 0.00 0.03 0.00 1.03 0.51 0.50
Var5 �0.01 �0.05 �0.01 0.95 0.19 0.19
Var6 �0.01 �0.04 �0.01 0.96 0.35 0.35
Var7 �0.00 �0.01 �0.00 0.99 0.88 0.88
Var8 0.01 0.10 0.01 1.10 0.04 0.04
Var9 0.02 0.10 0.02 1.11 0.01 0.01
Var10 0.02 0.07 0.02 1.07 0.02 0.02
Var11 �0.03 �0.12 �0.03 0.88 0.00 0.00
Var12 0.01 0.06 0.01 1.05 0.08 0.08

Note. N � 24,191. The two columns under Coefficient display the raw
regression coefficients from the linear (ordinary least squares [OLS]) and
logistic (logit) regression analyses. Whereas linear regression analysis
yields the average treatment effect size in terms of probabilities, logistic
regression analysis yields the log of (ORs). The two columns under
Estimate display the estimates that researchers typically report after using
linear and logistic regression. For linear regression, these estimates corre-
spond to the average treatment effect (ATE) whereas for logistic regres-
sion, these estimates are generally ORs. The two columns under p value
display the p values generated by linear and logistic regression for each
variable.
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