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Abstract

Missing data is a common feature of experimental datasets. Standard methods used by psychology
researchers to handle missingness rely on unrealistic assumptions, invalidate random assignment proce-
dures, and bias estimates of effect sizes. We describe different classes of missing data typically
encountered in experimental datasets, and we discuss how each of them impacts researchers’ causal
inferences. In this tutorial, we provide concrete guidelines for handling each class of missingness,
focusing on 2 methods that make realistic assumptions: (a) inverse probability weighting (IPW) for mild
instances of missingness, and (b) double sampling and bounds for severe instances of missingness. After
reviewing the reasons why these methods increase the accuracy of researchers’ estimates of effect sizes,
we provide lines of R code that researchers may use in their own analyses.

Translational Abstract

Researchers rarely manage to collect every piece of information about each participant in their study. For
instance, participants sometimes refuse to answer questions that they consider sensitive (e.g., income,
political orientation, sexual practices) or quit the study before completing it. If ignored or handled
inappropriately, this phenomenon referred to as “missingness” generally compromises researchers’
ability to make causal inferences based on their experiments. Specifically, missingness biases research-
ers’ estimates of the effect size of the treatment. In this tutorial, we review the different ways in which
missingness impacts the results of experimental studies and provide researchers with concrete steps for
addressing each type of missingness they may encounter. For mild cases of missingness, we recommend
using a method called inverse probability weighting (IPW). For severe instances of missingness, we
recommend that researchers recontact a sample of participants with missing values to fill the gaps. This
method, which involves recollecting data, is called double sampling and bounds. For both methods, we

provide lines of R code that researchers may use in their own analyses.

Keywords: missing data, attrition, experiment, inverse probability weighting, double sampling and

bounds

Experimental datasets often involve some degree of data miss-
ingness. This issue arises when one or more variables from a
dataset include missing values for some participants but not for
others. The primary focus of this tutorial is to introduce psychol-
ogy researchers to the issue of and corrective methods for attrition,
defined as missingness in the dependent variable. Attrition is the
most pervasive and critical type of missingness in psychology
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studies. We also review missingness in pretreatment covariates
(e.g., gender, race, income), which researchers use in their regres-
sion analyses to increase statistical power and the precision of their
estimate of experimental treatment effects (Gerber & Green, 2012;
Wang, Sparks, Gonzales, Hess, & Ledgerwood, 2017). The pres-
ence of missingness in pretreatment covariates is problematic but
easily solved with simple imputation methods. In this tutorial, we
describe one of these corrective methods. A final possible type of
missingness is missingness in the treatment assignment variable.
However, in the case of experimental studies, this possibility is
ruled out by design because researchers can always know (at least
in principle), who was randomly assigned to the treatment versus
control conditions.

Missingness is pervasive in psychology studies because re-
searchers rarely manage to gather all of the information that they
need from everyone in their sample. First, participants may be
unwilling to provide certain responses, which is often the case
when questions are perceived to be sensitive. For instance, ques-
tions about participants’ mental health, employment status, atti-
tudes toward controversial topics, or sexual practices may induce
anxiety and cause attrition. Second, missing data can result from
participants dropping out of the study. Motivations to dropout may
be boredom, having other priorities, no longer needing the pay-
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2 GOMILA AND CLARK

ment, or simply deciding to use free time in a different way. Third,
participants may not be able to complete the study. This may
happen, for example, when participants move out of the area in
which the study is being conducted. Finally, data missingness may
be due to administrative errors, such as accidental deletion of some
values in a dataset.

Missingness is a serious issue that psychologists need to address
in their data analyses. Specifically, missing data compromise
causal inferences by invalidating random assignment procedures
(Zhou & Fishbach, 2016) and introducing bias into researchers’
estimates of effect sizes (Gerber & Green, 2012). If not handled
appropriately, missingness will turn a well-designed experiment
into a correlational study.

Although powerful methods have been developed to account for
missing data in experimental studies, psychologists rarely use
them. Instead, psychologists typically ignore the presence of miss-
ing values entirely and simply conduct their analyses on the data
that are not missing. In some cases, this practice is accompanied by
comparisons of rates of missingness in different experimental
conditions or demographic groups using statistical tests (e.g., ¢
tests). Unfortunately, these widespread strategies are inadequate
and rely on unrealistic assumptions. In this tutorial, we recommend
that researchers use different methods to handle attrition in their
data. Specifically, we review methods that make weaker, more
realistic assumptions: inverse probability weighting (IPW; Gerber
& Green, 2012) and double sampling and bounds (DSB; Coppock,
Gerber, Green, & Kern, 2017). We do not discuss statistical
methods that make stronger model assumptions such as multiple
imputation (MI) or multiple overimputation (MO). Researchers
interested in learning about these methods may consult a large
literature on the topic (e.g., Blackwell, Honaker, & King, 2017;
Enders, 2010; Graham, 2009, 2012).

Our objective is to provide researchers who encounter missing
data in their experimental studies with concrete guidelines. In the
presence of missingness, researchers need to carefully think about
the possible reasons why data are missing for some participants but
not for others. This will lead researchers to make a key assumption
about the class of missingness in their data, and this assumption
will determine the appropriate statistical or design-based proce-
dure to handle attrition. To be clear, any assumptions made during
this process are based on human judgment, and researchers should
be ready to justify their decisions in their articles.

The remaining parts of this tutorial aim to help researchers go
through these different steps. First, we review a framework to
understand how missing data affect the results of experimental
studies. Specifically, we introduce the potential outcomes frame-
work (Holland, 1986; Neyman, 1923, 1938; Rubin, 1974, 1977)
and define missingness as a potential outcome (Gerber & Green,
2012). This framework allows us to distinguish between different
classes of missing data. The first class of missingness, called
missingness completely at random (MCAR), is extremely unlikely
in psychology studies. Yet, common practices inappropriately
make the assumption that missing values are MCAR. The second
and third classes of missingness, called missingness completely at
random conditional on observed variables (MCAR|X) and miss-
ingness not at random (MNAR), are much more plausible. This
tutorial focuses on methods targeting these more realistic cases.
Specifically, we explain the theoretical underpinnings of IPW and

DSB, and we provide lines of R code that researchers may use as
templates for their own analyses.

Potential Outcomes: A Framework to Understand
Missingness in Experimental Datasets

Analytic Strategies for Experimental Designs

For concreteness, imagine that we conducted an experiment testing
the causal effect of a treatment on a dependent variable (DV) at
Fictional School, a middle school for sixth and seventh graders. For
this hypothetical experiment, we recruited a sample of students,
randomly assigned each student to a treatment or control condition,
and collected the data. Our final dataset includes the DV and the three
pretreatment covariates: race, gender, and grade. Table 1 dis-
plays a hypothetical dataset (N = 8) for this study.

We now consider two common analytic strategies to test the effect
of the treatment on the DV in experimental studies: (a) simple
regression analysis (equivalent to ANOVA); and (b) multiple regres-
sion analysis, in which we control for pretreatment covariates.

The simple regression model can be formally written:

Yi=Bg+t1Z +¢ (D

in which i indexes participants in the sample, Y is the dependent
variable, 7 is the treatment effect, Z; is a binary treatment assign-
ment indicator returning 1 if a participant was assigned to the
treatment condition and O if a participants was assigned to the
control condition, and € is an error term.

To run this analysis in R, we could write the following line of
code:

Im(DV ~ treatment,
data = data)

The multiple regression model can be formally written:
Yi=Bgt+t1Z+XB +¢ 2)

in which i indexes participants in the sample, Y is the dependent
variable, 7 is the treatment effect, Z; is a binary treatment assign-
ment indicator returning 1 if a participant was assigned to the
treatment condition and O if a participants was assigned to the
control condition, X is a matrix of pretreatment covariates, (3 is a
vector of covariate effects, and € is an error term.

To run this analysis in R, we could write the following line of
code:

Table 1
Hllustration of the Fictional School Student Dataset
Without Missingness

ID Treatment DV Race Gender Grade

1 1 76 White Male Sixth grade

2 0 70 Black Female Seventh grade
3 0 68 White Female Sixth grade

4 0 59 White Female Sixth grade

5 0 76 Black Male Seventh grade
6 1 86 White Female Sixth grade

7 1 90 Black Female Sixth grade

8 1 84 White Male Seventh grade
Note. DV = dependent variable.
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Im(DV ~ treatment + race + gender + grade,
data = data)

If no data points are missing from the dataset, such as in the data
displayed in Table 1, both analytic strategies yield unbiased estimates
of the average treatment effect (ATE) at Fictional School. Note that
the multiple regression analysis generally performs better because
including pretreatment covariates such as gender, race, and grade into
the regression model improves the precision of A’TE, the estimated
average treatment effect (Gerber & Green, 2012). This is true even
when researchers do not specify the “right” underlying model linking
the covariates to the dependent variable, or when covariates are
measured with error (e.g., via imputation).

Potential Outcomes and Average Treatment Effects

Researchers conduct experiments to estimate the average causal
effect of a treatment of interest (e.g., an intervention, a training) on
a dependent variable (e.g., belonging, 1Q), in a population (e.g., the
students of Fictional School). To do so, individuals are randomly
sampled from the population of interest and randomly assigned to
one of two experimental conditions: treatment versus control. In
essence, this procedure aims to answer a question that is diffi-
cult to directly test. Suppose that we could observe all individ-
uals from the population of interest simultaneously in two
parallel worlds that differ in one dimension: the presence versus
absence of a treatment. What would be the average difference in
the DV between these two worlds?

This question posits that each individual i has two potential
outcomes for the dependent variable: an outcome Y,(0) in a world
without the treatment and an outcome Y,(1) in an otherwise iden-
tical world with the treatment. Under this framework, the treatment
has a causal effect T, for each individual i, which can be written:

™= Y1) = Yi(0) 3)

The ATE across all individuals from a population of size N is
equal to the average value of T, which can be expressed:

_IN
AE—Ngn 4)

We illustrate the concept of potential outcomes in Table 2,
which displays hypothetical potential outcomes of Fictional
School students. We observe, for instance, that the treatment has a
causal effect of Size 4 on Student 1 whereas it has a causal effect

Table 2
lllustration of Potential Outcomes for Students From the
Fictional School

D Y(0) Y1) T
1 72 76 4
2 70 76 6
3 68 68 0
4 59 61 3
5 76 77 1
6 90 86 —4
7 90 90 0
8 74 84 10

Note. DV = dependent variable.

of Size 0 on Student 7. The average treatment effect for the 8
students from Table 2 is equal to 2.5, that is, the sum of 7, divided
by eight (number of students).

In reality, the causal effect of a treatment 7; for an individual i
is impossible to measure because can never observe both potential
outcomes Y,(0) and Y,(1) for the same individual. Instead, in the
absence of missingness, we observe either Y,(0) or Y,(1) depending
on which experimental condition z; (treatment or control) individ-
ual i was assigned to. The observed potential outcome for each
individual i can be written:

Y; =Y (Dz; + Y{0)(1 —z) ®)

in which z; takes the value 1 when individual i was assigned to the
treatment condition and O when individual i was assigned to the
control condition. Because z; € (0, 1), Equation 5 implies that we
observe Y,(1) for participants assigned to the treatment condition,
and Y,(0) for participants assigned to the control condition.

Estimating the ATE With Experimental Designs

If experiments do not allow us to derive T,, how do experimental
designs allow us to practically estimate the ATE?

To understand how, let’s use Equation 4 to derive the ATE in
terms of potential outcomes:

1 n
ATE = <1,

~ IS yay-,
= §& X)) ©

~ 1Sy - 13y
= N2 YD~ j2 Y0
= My T By

in which Ry (1) is the average of Y,(1) and Ry 0) is the average of
Y0).

By randomly assigning individuals to experimental condition,
we eliminate—in expectation—the presence of any systematic
difference between those in the treatment group and those in the
control group. This implies that under the conditions of no data
missingness, experimental designs allow us to derive unbiased
estimates of Py (1) using the outcomes of those assignment to
treatment and of Py (0) using the outcomes of those assigned to
control. Specifically, oy, (1) is estimated by averaging the observed
values of Y,(1) and oy (0) is estimated by averaging the observed
values of Y,(0). In this sense, the estimated average treatment
effect ATE is best expressed using conditional expectations:

ATE =E[Y,(1)|Z,=1] - E[Y(0)|Z; = 0]

= E[Y(1)] — E[Y(0)] (7
a7 70

A Note on Bias

Importantly, bias does not refer to the difference between a
single estimate of a quantity of interest (e.g., ATE, My, (0)s }Lyi(o))
and the true value of this quantity of interest in the population.
Instead, bias is a product of the process used to generate an
estimate. Therefore, bias in ATE can be thought of as the differ-
ence between estimates of the ATE on average across all possible



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

4 GOMILA AND CLARK

random assignments and the true population ATE. This implies
that an estimate is unbiased if it is correct in expectation, that is, on
average over all assignments. In the context of Equation 7, if the
random assignment procedure was not corrupt, estimates of Ky (0)
and Wy (o) are correct in expectation, and therefore, ATE is unbi-
ased.

In practice, the unbiased estimate of the ATE along with its
standard error and corresponding p value are derived with one line
of code using simple or multiple linear regression, as described in
the code following Equations 1 and 2. Let’s now explore how these
analyses lead to bias in the presence of missing data.

Missingness Leads to Bias

Statistical Software Discard Individuals With Missing
Values From the Analyses

When values are missing from experimental datasets, statistical
software (e.g., R, Stata, SPSS) disregard entirely all participants
displaying missing values in at least one of the variables included
in the analysis, without warning. Table 3 displays a new version of
the simulated Fictional School dataset, which includes missing
values in the DV and pretreatment covariates, indicated with
“NA.” We will use Table 3 to illustrate how missingness impacts
the results of experimental data analysis.

Missingness in pretreatment covariates. Missing values in
pretreatment covariates affect multiple linear regression but not
simple linear regression. Specifically, statistical software removes
all the participants who have at least one missing value in one of
the pretreatment covariates included in the model. For instance, in
the Fictional School dataset, none of the students displayed in
Table 3 would be taken into account in a multiple regression
analysis that includes the pretreatment covariates race and
gender in the model. Some students, such as Students 1 and 7,
would be removed by the software because their gender is missing.
Other students would be removed because their race (e.g., Students
3 and 6) or DV is missing (e.g., Student 2).

This implies that when researchers ignore the presence of miss-
ing values in covariates and use multiple linear regression, they
introduce missingness in the dependent variable for their analysis.
It follows that missingness in covariates, if not corrected for,
generates attrition. The main distinction between these two forms
of missing data is that missingness in covariates, contrary to
attrition, is easy to correct. Researchers can (and should always!)

Table 3
Hllustration of Missingness in the Fictional School Dataset

ID Treatment DV Race Gender Grade

1 1 76 White NA Sixth grade

2 0 NA Black Female Seventh grade
3 0 68 White NA Sixth grade

4 0 NA NA NA Sixth grade

5 0 76 Black NA Seventh grade
6 1 86 NA Female Sixth grade

7 1 90 Black NA Sixth grade

8 1 NA White NA Seventh grade
Note. DV = dependent variable.

use a simple strategy such as mean substitution to prevent the
statistical software from excluding observations because of cova-
riate missingness. This method consists of replacing the missing
value of each covariate by the mean of that covariate. In this
tutorial, we provide a simple code that does just that (see Scenario
2). Importantly, this substitution method (or comparable ones)
does not introduce bias in ATE and can be used to correct for any
type of missingness in covariates. However, this method is never
appropriate to correct for attrition.

Attrition. Missingness in the dependent variable Y, impacts
simple and multiple linear regression analyses in the exact same
way. Statistical software discard any individuals whose dependent
variable is missing, without warning, and conduct the analysis on
only the remaining participants.

Correcting for attrition is critical but not as straightforward. To
understand how attrition affects experimental results, we go back
to the potential outcomes framework and define attrition as a
potential outcome (Gerber & Green, 2012, p. 215).

Attrition as a Potential Outcome

In an experiment, individuals assigned to an experimental con-
dition z; have two potential outcomes for attrition: their dependent
variable is either reported or missing. Let r,(z) indicate the poten-
tial outcomes of individual i assigned to an experimental condition
z, such that z; = 1 if Individual i was assigned to the treatment
condition and z; = 0 if Individual i was assigned to the control
condition. Let r;, = 1 when the dependent variable is reported and
r; = 0 when the dependent variable is missing. As a result, r,(0)
indicates whether the dependent variable is reported for Individual
i when Individual i was assigned to the control condition. Con-
versely, (1) indicates whether the dependent variable is reported
for individual i when individual i was assigned to the treatment
condition (see Table 4). The observed potential outcome r; can be
written:

ri = ri0)(1 —z) + r(l)z ®

As illustrated in Table 4, Equation 8 implies four possible types
of participants with regard to attrition in an experiment (Gerber &
Green, 2012, p. 228). Participants can be always responders, in
which case we observe their DV independent of treatment assign-
ment. Participants can be never responders, in which case they are
missing independent of treatment assignment. Finally, some par-
ticipants’ potential outcomes for attrition may depend on treatment
assignment: If being assigned to the treatment condition (but not
control) causes them to be missing, we call them if-untreated
responders, and if being assigned to the control condition (but not
treatment) causes them to be missing, we call them if-treated
responders. At this point, it is important to keep in mind that
attrition can cause bias in the estimate of the population ATE even
in the absence of if-treated responders and if-untreated responders.
That is, attrition can lead to bias even when treatment assignment
does not cause attrition. As explained in more details subsequently,
this happens when always responders and never responders are
impacted by the treatment differently. However, when treatment
assignment does not cause attrition, we can get an unbiased esti-
mate of the ATE for a specific—and often relevant subset of the
population: always responders (Gerber & Green, 2012, pp. 224—
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Table 4
Hllustration of Potential Outcomes for Students From the
Fictional School

z=0 z=1 Type of participant
r{0) =1 r{l) =1 always responder
r0) =0 r(l) =1 if-treated responder
r{0) =1 r{l) =0 if-untreated responder
r{0) =0 r{l) =0 never responder

226). Note that the ATE for always responders may or may not be
different from the population ATE.

When Is Attrition Innocuous?

The short answer: Attrition is rarely innocuous. It is difficult to
think of any psychology studies in which researchers may safely
assume that missingness was produced in a way that does not bias
estimates of the population ATE. The presence of missing values
does not bias researchers’ causal inferences only if these values are
MCAR.

MCAR is the strongest possible assumption that researchers can
make about attrition in their dataset. This type of missingness is
extremely unlikely and difficult to prove because it implies that
attrition is unrelated to any variables that one can imagine, includ-
ing variables that were not collected as part of the study (also
known as unobservables). For instance, MCAR implies that miss-
ingness is independent of treatment assignment, as well as partic-
ipants’ mood, values, income, gender, race, political orientation,
religious beliefs, sleeping patterns, hair color, visual acuity, and
neighborhood. Put differently, if missing data are MCAR, each
participant in the study has the exact same probability of missing-
ness. This could be the case if some values were accidentally
deleted by a computer program in a perfectly random way.

Formally, when missingness is MCAR, R, is independent of
both the treatment assignment Z; and the potential outcomes for the
dependent variable Y,." Looking back at Equation 7, this implies
that in expectation, neither Wy, ) NOT Py ) nor the difference
between Ry (0) and Ry (1) is affected by missingness. A related
implication of Equation 7 is that attrition caused by experimen-
tal conditions is innocuous as long as missingness is completely
random within each condition. Specifically, if values are de-
leted completely randomly from each experimental condition
separately—even at different rates—Ly () and Ry, (1) will be
correct in expectation, therefore the difference between Ry (0)
and py ) will also be correct in expectation.

To summarize, missingness does not lead to bias if:

Yi(2) 1L R{(2) (C)]

When to Assume That Data Are Missing Completely
at Random (MCAR)

We urge psychologists to not assume that values are MCAR.
When participants decide to drop out of the study or to not answer
some questions, which is the most common cause of missingness
in psychology studies, it is impossible to demonstrate that missing
values are MCAR because it would require proving the null for an
infinite number of unknown unobservables. In the rare occasions

in which researchers have good reasons to believe that missingness
was generated in a completely random way (e.g., by a computer
program that has no knowledge of the participants characteristics
or responses) and can prove it, missingness is considered ignorable
(Little & Rubin, 1987) and limiting the analysis to complete cases
does not lead to bias.

Statistical Analyses Cannot Justify the Relaxing of
Assumptions About Attrition

Contrary to common misconceptions, statistical analyses com-
paring rates of missing values between different subgroups, such
as men and women or treatment and control condition participants,
are often uninformative because they cannot prove that missing-
ness is MCAR. There is only one circumstance under which these
analyses can be informative: if they reveal differential rates of
attrition between subgroups. In this case, they confirm that miss-
ingness is not MCAR and researchers can use them to speculate
about the possible reasons why values are missing in their data.
However, these analyses are not informative in the opposite sce-
nario: when researchers find no significant difference in rates of
missingness between different subgroups or experimental condi-
tions. In this case, researchers should not conclude that missing-
ness is MCAR. First, researchers generally lack suitable measures
to predict missingness in their sample. That is, they may have not
measured enough variables to predict missingness. For example,
researchers rarely have access to all the variables that could
explain missingness, such as mood, caffeine intake, or number of
hours of sleep in the last few nights. Second, researchers may lack
statistical power to detect asymmetrical missingness. For instance,
researchers may compare rates of missingness between males and
females, Black participants and White participants, or liberals and
conservatives and find nonsignificant differences. However, these
nonsignificant results do not prove that missingness is symmetrical
or that missingness is innocuous. In fact, these nonsignificant
results may be due to low statistical power, especially in small
samples.

How Does Nonrandom Attrition Lead to Bias?

We described that data are rarely missing completely at random
(MCAR) because it is unlikely that attrition truly occurs com-
pletely randomly. Most of the time, some participants have a
higher probability of being missing than other participants. Con-
sider a hypothetical study on the impact of a new policy on
workers’ perception of gender discrimination in the workplace. In
this setting, gender minorities may perceive some questions as
more sensitive than members of the majority gender identity
group, and as a result, be less likely to answer them. Or, think
about a longitudinal study on the impact of a therapy on patients’
well-being, patients who are doing particularly poorly may drop
out of the study at higher rates than others.

Nonrandom attrition introduces bias when it is not independent
of the potential outcomes for Y;. This can be the case when attrition
is caused by treatment assignment z,, but there are other cases as

' As a convention, we use capital letters to describe random variables
and lower-case letters to describe specific values that random variables
may take.
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well. Let’s illustrate how nonrandom attrition biases the results of
experimental studies using the Fictional School study.

Bias from nonrandom attrition caused by treatment
assignment. Suppose that in this study, being assigned to treat-
ment caused attrition in seventh graders and that seventh graders
have a tendency for lower values of the dependent variable Y;. This
implies that the estimate of Moy (1) (Equation 7) will be biased

upward, which leads to bias in ATE (i.e., the difference: Ry1) —
oy (0)} Equation 7). In sum, nonrandom attrition that is caused by
treatment assignment produces bias, even when there is no heter-
ogeneity in the treatment effect, that is, even when the treatment
has the same effect size 7,,,,;,, on the individuals with missing data.

Bias from nonrandom attrition independent of treatment
assignment. Now suppose that in the Fictional School study,
seventh graders still have a tendency for lower values of the
dependent variable Y; and are more likely to be missing. However,
in this scenario, nonrandom attrition is not a function of treatment
assignment, such that the population does not include any if-
treated responders or if-untreated responders. This could happen if,
for instance, a random group of seventh graders went to volunteer
at the soup kitchen on data-collection day, without knowing their
treatment assignment. If the treatment effect is the same for sev-
enth graders as on average in the population (Fictional School in
this case), Py (1) and Iy, (0) will both be biased upward, but the
difference Ry — M) will remain unbiased for the ATE. On
the contrary, anytime the treatment effect 7, is different for the
subgroup of participants who are missing, the estimate of the ATE
will be biased. To understand why, imagine what would happen if
the treatment effect on the participants who 7, is 10 but the
treatment effect on the rest of the population is one? In this case,
missingness would create a downward bias in the estimated ATE
for the population. However, because missingness is not caused by
treatment assignment, the estimated ATE is unbiased for always
responders (see Table 4). Researchers who can demonstrate that
missingness is not caused by treatment assignment may decide to
redefine their quantity of interest as the ATE on always responders
(Gerber & Green, 2012, pp. 224-226).

Handling Different Forms of Attrition in Experimental
Studies

In the presence of nonrandom missingness, researchers need to
make an assumption about the type of missingness, which will
guide the method that they will use to address it. Researchers may
make one of two realistic assumptions. These assumptions depend
on researchers’ beliefs about the causes of attrition on the one
hand, and the presence of key pretreatment covariates in the
dataset on the other hand. Researchers may decide to assume that
they have collected the variables that explain missingness in their
sample (e.g., gender, ethnicity, mood), in which case missingness
is assumed to be completely random conditional on observed
variables (MCAR|X). On the contrary, researchers may believe
that they do not have access to the covariates that explain miss-
ingness in their dataset, in which case they assume that missing-
ness is conditional on unobserved variables, and missing values
are said to be MNAR.

In the remaining parts of this tutorial, we review the details of
these two assumptions, and provide concrete strategies to correct
for missingness based on each of these assumptions.

Outcome Data Missing Completely at Random
Conditional on Observed Covariates (MCARI|X)

If attrition is not completely random, it may be a function of
observed variables, that is, pretreatment covariates that were col-
lected by the researcher. Thus, we refer to missingness conditional
on observed variables as MCAR | X.? If data in the Fictional School
study are missing because a random sample of the students from a
specific grade were sent to volunteer at the soup kitchen on the day
of data collection, missing data are MCAR|grade. In this specific
example, the remaining sample only includes always responders
and never responders. A related but different scenario could be that
assignment to the treatment condition makes seventh graders more
likely to volunteer at the soup kitchen on data collection day. In
this case, missing data are MCAR|grade as long as the seventh
graders who volunteer are similar to other seventh graders on
every other dimension. That is, there is no reason to believe that
any observed or unobserved variables other than grade explain
missingness. This implies that, in expectation, the students who are
missing are the same as the students in the same grade who are not
missing.

When treatment assignment causes missingness, it is more likely
for missingness to be conditional on a set of covariates. For
instance, being assigned to the treatment condition may cause
Black male seventh graders to volunteer at the soup kitchen.
Perhaps something about the treatment is particularly off-putting
to this demographic, causing an otherwise random group of these
students to seek other ways to spend their time. In this case,
missingness is conditional on grade, race, and gender.

In this tutorial, we illustrate further MCAR|X with simulated
data and we review IPW, a method that leverages nonmissing data
from individuals that are similar to those who are missing to
recover the average treatment effect.

Outcome Data Missing Not at Random (MNAR)

When attrition is dependent on unobserved variables, that is,
variables that researchers do not have access to, data are consid-
ered MNAR. Imagine that instead of being randomly assigned to
volunteer at the soup kitchen, we learn that the students who are
missing decided to stay at home on data collection day. It may be
the case that the students who are most insecure about tests or live
further away from school did not show up. In this situation, we do
not know what triggered missingness or we have not collected the
covariates that explain missingness. As a result, we cannot lever-
age existing data to correct for attrition and the missing data
mechanism is said to be nonignorable (Little & Rubin, 1987).
When missing data are MNAR, correcting for bias due to attrition
requires more effort. In this tutorial, we review a method suggested
by Coppock, Gerber, Green, and Kern (2017), which combines
double sampling and bounding procedures to account for attrition
dependent on unknown variables.

2 Traditionally, this type of missing data is said to be missing at random
(MAR), a term that can be misleading because MAR missingness is, in
fact, only conditionally random (Graham, 2009).



publishers.

and is not to be disseminated broadly.

gical Association or one of its allied

This document is copyrighted by the American Psycholo,
This article is intended solely for the personal use of the individual user

MISSING DATA IN EXPERIMENTS 7

Solutions to Missingness in Experimental Studies

We are going to walk you through a series of imaginary sce-
narios to demonstrate how to handle different types of missingness
in your dataset. Specifically, we will focus on the following issues:
(a) fixing missing values in covariates, (b) implementing IPW; and
(c) using the DSB method. To do so, we create a population dataset
from scratch, draw a sample from this dataset, introduce different
types and amounts of missing values in the sample data, and
provide code for the relevant method.

We are going to work with the following imaginary setting:
Consider a company interested in introducing a mandatory diver-
sity training program for all of their 20,000 employees. Before
introducing the program, they would like to test it on a random
sample of 2,000 employees for effectiveness. Prior to the treat-
ment, the company administers a survey to all employees, request-
ing their race, gender, and education level. For simplicity, imagine
that all employees identify as either Black or White, female or
male, and hold a highest degree either from college or graduate
school. As part of this survey, the company also measured each
employee’s baseline views toward diversity. This variable, labeled
pretest, is coded “high” for employees more likely to perceive
diversity in a complex way and “low” for those more likely to
perceive diversity in a simple way. Half of the employees in the
sample are randomly assigned to sit through the full-day diversity
training (treatment condition) and the other half are randomly
assigned to sit through a full-day training on sustainability (control
condition). Apart from content, the structure of these trainings is
identical. At the end of the day, all employees in the sample are
asked to complete a series of tasks measuring the effectiveness of
the training. This constitutes the outcome measure of interest, that
is, the DV.

Description of the Population Data

Using simulation,® we generated a complete dataset (i.e., with-
out missing values) that includes demographic and pretest vari-
ables for all 20,000 employees of this hypothetical company. We
then generated the DV by assigning potential outcome values to
employees under the treatment and control conditions. The true
average treatment effect of the program in the simulated popula-
tion is:

ATE=1.00

The objective of experimental studies is to collect data from a
random sample of the population of interest and estimate the true
ATE as precisely as possible. This is what we are going to do in
the next parts of this tutorial. As displayed in Table 5, this
population average treatment effect (ATE = 1.00) is not constant
across subgroups of employees. In other words, the effect size of
the treatment on the DV varies depending on employees’
pretest scores, as well as their demographics. For instance, the
program has, on average, an effect size of 0.64 on black employ-
ees, and 1.09 on white employees (see Table 5). As previously
described, when causal effects are heterogeneous and groups attrit
at different rates, we can obtain biased estimates of the ATE.

From now on, our objective is twofold. First, we aim to illustrate
how different classes of missing data are generated, which will
clarify how to make the correct assumption about missingness in

Table 5
Description of the Simulated Population Data

Demographic N Proportion Treatment effect
Female 5,795 29.00% 0.92
Male 14,205 71.03% 1.04
Black 4,283 21.42% 0.65
White 15,717 78.59% 1.10
College 7,792 39.76% 1.00
Graduate school 12,048 60.24% 1.00
Pretest low 6,412 32.06% 0.53
Pretest high 13,588 67.94% 1.23

your data. Second, we provide concrete steps and lines of R code
that will allow you to compute unbiased estimates of the popula-
tion average treatment effect for each type of missingness.

To do so, we draw a random sample of 2,000 employees from
the population data (N = 20,000), which we use in four different
scenarios. The variable names and first few rows of this sample
dataset, which we call dat, are displayed in Figure 1. In each
scenario, we use this exact same sample of 2,000 employees, but
we introduce different amounts and types of missing data. We then
use the appropriate method to correct for missingness in R and
estimate the ATE (A/]:E).

Scenario 1: No Missing Data

In Scenario 1, we work on a sample that has no missing data at
all. This allows us to introduce our analysis strategy and retrieve an
estimate of the ATE from an imaginary study that was fortunate
enough to not involve any missingness.

In this hypothetical scenario, all of the employees from our
random sample of 2,000 employees provided their demographic
information and completed their posttraining survey. To estimate
the ATE in the population of 20,000 employees based on this
sample of 2,000 employees, we use one of the following two linear
regression models:

Model 1:
Im(DV ~ treatment, data = dat)

Model 2:

1lm(DV ~ treatment + race + gender +
education + pretest,

data = dat)

In the absence of missingness, both the simple linear regression
estimator (Model 1) and the multiple linear regression estimator
(Model 2) are unbiased for the average treatment effect. In the
following scenarios, we will use Model 2 exclusively, which is
often preferred in the experimental framework since controlling
for covariates typically increases precision (Gerber & Green,
2012). In the files that we share on the Open Science Framework,
we provide R codes for both models for all missingness scenarios.

3 All of our R code files and simulated data can be found on the Open
Science Framework: https://osf.io/9sva5/.
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2.13322416  Low
1.03778975  Low
4.17865117  High
0.31552294  High
8.23087238  High
1.12952368  Low
-1.50399821 High
-0.61994523 Low
11.49401028 High
0.02508732  Low
1.31018538  High
1.65395728  Low
6.80900840  High
2.53257774  High
2.25935413  Low
1.93760186  Low
-2.06294927

1.11580865

Figure 1.
version of this figure.

In the context of Scenario 1, Model 2 provides, on average,4 the
following unbiased estimate of the average treatment effect:

ATE = 1.00
SE=0.11

Scenario 2: Missing Covariates

The procedure for correcting for missing covariate data is al-
ways the same. It is simple, highly effective, and does not depend
on the class of missingness involved. In the experimental frame-
work, including covariates in the analysis serves one purpose:
increasing the precision of your estimate of the effect of the
treatment on the DV (the ATE). The objective of this procedure
is to ensure that the statistical software not drop any subjects
based on covariate missingness. To do so, we simply substitute
the missing values of each covariate by the mean value of that
covariate. This way, the dependent variable remains unchanged
and we do not introduce bias in the estimate of the effect of the
treatment on the DV.

Imagine that no values are missing in the DV, but that at least
one value from race, gender, education, or pretest is
missing for a total of 500 out of 2,000 employees in the sample.
Because no covariates are included in the simple linear regression
analysis (Model 1), this hypothetical case of missing covariates
would only affect the multiple linear regression analysis (Model
2). Specifically, Model 2 would estimate the average treatment

¥ race * gender ¥ education
i1 0 i1
i 0 il

(0] 1 1

Dataset of the simulated sample. DV = dependent variable. See the online article for the color

effect based on only 1,500 observations (instead of 2,000 obser-
vations), which reduces the statistical power of the analysis. Fur-
thermore, the subsample of complete observations—in this case,
1,500 observations—is usually nonrepresentative of the popula-
tion. This is the case because some subgroups are often more likely
than others to have missing values, both in the DV and covariates,
and this nonrepresentative feature of the subsample usually biases
the estimate of the ATE.

As an illustration, we used simulation to create 1,000 random
samples of 2,000 employees, 500 of which have missing race,
gender, or education data if they scored “low” (but not
“high”) at pretest. These simulations revealed that, on average,
Model 2 yields the following biased estimate of the average
treatment effect:

ATE = 1.16
SE=0.14

*We used simulation to generate 1,000 random samples of 2,000 indi-

viduals from the entire population. For each of these 1,000 samples, we
randomly assigned each individual to the treatment or control condition
and estimate the ATE using Model 2. This procedure allowed us to derive
the sampling distribution of the average treatment effect. In the body of this
tutorial, we provide: (a) the average value of the sampling distribution of
the average treatment effect, denoted by ATE, and (b) the empirical

standard error, denoted by §E, which is the standard deviation of the
sampling distribution of the average treatment effect.
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Solution: Mean Substitution in Covariates

Correcting for bias in the ATE when covariate values are missing
is straightforward and does not depend on the type of missingness at
play. When values are missing from a covariate, simply replace all the
missing values by the mean of the available values of that covariate.
This method works under the assumption that covariate missingness
is not a function of treatment assignment.

For instance, to replace missing values from the race variable
by the mean of the race variable in R, we use the following code:

datSrace[is.na(datSrace)] <- mean(datSrace,
na .rm = T)

After using this procedure to replace missing values from each
of the covariates that we use in Model 2, regressing the DV on the
treatment variable, covariates, and pretest (Model 2) yields, on
average,’ the following unbiased estimate of the ATE:

ATE = 1.00
SE=0.11

Scenario 3: Outcome Data Missing Completely at
Random Conditional on Observed Covariates
MCAR[X)

Now let’s imagine that 750 of the 2,0000 employees from the
sample decided to drop out of the study. After taking a closer look
at these employees, you realize that for all of them, without
exception, the variable pretest returns high. If you are willing
to assume that these participants who dropped out of the study
constitute a completely random sample of the participants who
scored high at pretest, you are ready to make the assumption
that missingness in the DV is MCAR|X. To be precise, in this case,
your missing outcome is MCAR |pretest. In other words, data are
not missing completely at random in the whole dataset, but they
are missing completely at random among the subset of participants
who scored high on pretest.

Given that in the population, the size of the treatment effect is
different for employees who scored high and low at pretest (see
Table 5), underrepresentation of one of these two subsets of the
population in the sample biases your inferences. Specifically,
because the treatment effect is larger, on average, for employees
who scored high at pretest (see Table 5), the estimated ATE from
Model 2 should be biased downward. This is illustrated by the
mean of the sampling distribution of the ATE, calculated using
multiple linear regression for 1,000 simulated samples of 2,000
employees, prior to correcting for missingness. This procedure
returns, on average, the following biased estimates, illustrated in
Figure 2):

ATE = 0.86
SE=0.12

Solution: Inverse Probability Weighting (IPW)

If outcome data is missing for some participants, and if we are
willing to assume that one or more observed variables fully explain
patterns of outcome missingness, we can use IPW to correct for
bias (Gerber & Green, 2012; Seaman & White, 2013).

04

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
ATE

Figure 2.  Sampling distribution of the average treatment effect (ATE)
estimator. We used 10,000 randomizations to estimate the density of the
sampling distribution. The solid line indicates the ATE in the population of
interest. The dotted line represents the expected value of the ATE estima-
tor, computed from the empirical distribution. The distance between solid
and dotted lines represents bias. See the online article for the color version
of this figure.

This approach, often used in medical research (Austin & Stuart,
2015; Hofler, Pfister, Lieb, & Wittchen, 2005) or longitudinal
studies in the social sciences to account for drop-outs (e.g., Tan-
kard & Paluck, 2017), assigns a weight to each value of the DV that
is available in the data (i.e., nonmissing outcomes). Larger weights
are assigned to observations that have larger probabilities of being
missing, and smaller weights are assigned to observations that
have lower chances of being missing.

For instance, in Scenario 3 described above, all 750 values that
are missing from the DV come from an assumed random sample of
employees with high pretest scores. Using IPW, we assign a

5 We used simulation to create 1,000 random samples of 2,000 employees
in which we generated missingness in race, gender, or education for
500 employees who scored “low” (but not “high”) at pretest. For each of these
samples, we used the mean substitution procedure to correct for missingness in
covariates and estimated the average treatment effect using Model 2. This
procedure allowed us to derive the sampling distribution of the average
treatment effect and its standard error. The values displayed in the body of this

tutorial, ATE and S‘E, constitute the average value of the sampling distribu-
tion of the average treatment effect and its standard error.
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greater weight to available observations from employees with high
pretest scores. In this case, missingness can be fully explained
by one observed variable (e.g., pretest), but in other cases, it
might be explained by multiple observed variables (e.g., pre-
test, gender, and education). In the latter case, the weights
will be calculated using all the variables that are required to fully
explain missingness in the outcome variable.

Once the weights are calculated for each available observation,
we run weighted multiple linear regression instead of regular
multiple linear regression. Here are the details of the procedure to
follow in R for missingness conditional on: (a) one variable and (b)
multiple variables.

Step 1: Create a Response Dummy Variable

This variable returns 1 for available observations and O for
missing outcomes. In R, use the following code as a template:

datSresponse <- as.numeric(!is.na(datS$DV))

Step 2: Predict the Probability of Response of Each
Employee in the Sample

Now that we created the response dummy variable, we can
use the relevant covariates to predict the probability that each
observation is nonmissing in the sample. Put differently, we can
predict the probability that the response dummy variable re-
turns 1.

We approach this prediction problem by using logistic regres-
sion. Specifically, we regress the response dummy variable on
the relevant covariates interacted with the treatment indicator:

(a) For missingness conditional on one variable, such as
pretest:

fit_p_resp <- glm(response ~ pretest¥treatment,
family = binomial(link = “logit”),
data = dat)

(b) For missingness conditional on multiple variables, such as
pretest, race, gender, and education:

fit_p_resp <- glm(response ~ pretest*treatment
+ race*
treatment + gender*treatment +
education*treatment,
family = binomial (link = “logit”),
data = dat)

Step 3: Probabilities of Response

Next, we use the logistic regression output to create a new
variable p_resp, which returns each employee’s probability of
having a nonmissing outcome value:

p_resp <- fit_p_respSfitted

Step 4: Generate the Weights

Now that we have created the p_resp variable, we can calcu-
late the weights. To do so, we simply generate a variable gen_
weights, which returns the inverse of the probability of response
of each employee:

gen_weights <- 1/p_resp

Step 5: Weighted Linear Regression

We are now ready to use Model 2 in a weighted multiple linear
regression:

fit_ipw <- 1m(DV ~ treatment + race +
gender + education + pretest,
weights = gen_weights,
data = dat)

This weighted multiple linear regression allows us to recover the
true ATE of the sample. That is, on average,® this procedure yields
the following unbiased estimate of the population average treat-
ment effect in both (a) and (b) cases (see Figure 3):

ATE = 1.00
SE=0.14

Scenario 4: Outcome Data Missing Not at Random
(MNAR)

Imagine that 300 participants drop out of the study posttreat-
ment such that those with high pretest are more likely to drop
out in treatment than control condition. At this point, because we
have access to the pretest variable from the dataset, this situ-
ation seems to be MCAR|X. It is! Now, imagine that the company
never introduced the pretest question in the survey. In that
case, pretest is unobserved, which makes patterns of missing-
ness MNAR.

We simulated such patterns of missingness in our sample of
2,000 employees, and removed the pretest variable from the
dataset. In this new version of the dataset, that is, without infor-
mation about the missingness generating process, we have no way
to recover the source of missingness in the sample. The typical
practice of comparing rates of missingness across subgroups is
insufficient for diagnosing MNAR. Simply checking for signifi-
cant differences in missingness among observed variables cannot
rule out the possibility that missingness is being determined by a
relevant unmeasured variable. Thus, confirming that your data
missingness is not MCAR|X is not the end of your missing data
problem-solving, but rather the beginning.

Because we lack information on the cause of missingness, we
cannot use IPW to correct for bias. If we were to analyze this data
as is, using Model 2, we would obtain, on average across a large
number of samples, the following biased estimates (see Figure 4):

ATE = 0.56
SE=0.12

¢ We used simulation to create 1,000 random samples of 2,000 employ-
ees in which we generated missingness in the DV for 750 employees who
scored “high” (but not “low”) at pretest. For each of these samples, we used
IPW to correct for missingness and estimated the average treatment effect
using Models 1 and 2. This procedure allowed us to derive the sampling
distribution of the average treatment effect and its standard error. The
values displayed in the body of this tutorial, ATE and SE, constitute the
average value of the sampling distribution of the average treatment effect
and its standard error.
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Figure 3. Sampling distribution of the average treatment effect (ATE)
estimator. We used 10,000 randomizations to estimate the density of the
sampling distribution. The solid line indicates the ATE in the population of
interest, which is equal to the expected value of the ATE estimator
computed from the empirical distribution. This figure illustrates that the
corrected ATE estimator is unbiased. See the online article for the color
version of this figure.

Solution: Combine Worst-Case Bounds and Double
Sampling Methods

This method was developed by Coppock et al. (2017), who
combined two approaches to estimate the ATE under MNAR with
minimal assumptions.: worst-case bounds (Horowitz & Manski,
1998, 2000; Manski, 1990, 2009) and double sampling (Gerber &
Green, 2012; Hansen & Hurwitz, 1946; Neyman, 1923).

Broadly speaking, worst-case bounds is a method that yields
upper and lower bounds of the estimate of the ATE by replacing
the missing values in the DV by the most extreme values that the
DV could possibly take. This method usually produces bounds that
are too wide to be informative, making it so punishing that re-
searchers are reluctant to use it. In response, Coppock et al. (2017)
proposed a strategy to make the procedure more realistic and
informative by combining worst-case bounds with another method
that involves additional data collection: double sampling.

The double sampling method requires researchers to obtain
more data from the participants whose outcome values are missing.
In the case of fewer missing values or more resources, the re-
searcher may attempt to collect data from all of the participants

with missing data. Alternatively, in the case of large amounts of
missing values or fewer resources, the researcher may attempt to
collect data from a random sample of the participants with missing
data. In either case, the goal of double sampling is to obtain data
for the greatest proportion of participants with missing data.

This recruitment process can be achieved by simply offering
these participants to take the study again, or by increasing incen-
tives to participate. All in all, the objective is to gather additional
knowledge about the outcome values of the participants who
dropped out of the study. Importantly, the success of this proce-
dure lies in the researchers’ ability to achieve high rates of re-
sponses from the follow-up sample. Put differently, researchers
need to limit missing data from the follow-up sample at all costs.
In an ideal world, the follow-up sample would include responses
from all or most of the participants with missing data. However,
when resources are limited, researchers need to carefully think
about the size of the follow-up sample and the incentive that they
can offer to the participants to ensure that the largest possible
proportion of response.

Keep in mind that by offering different incentives to these
subjects than to those who initially reported their outcomes, you

Density

00 01 02 03 04 05 06 07 08 09 10 11 12
ATE

Figure 4. Sampling distribution of the average treatment effect (ATE)
estimator. We used 10,000 randomizations to estimate the density of the
sampling distribution. The solid line indicates the ATE in the population of
interest. The dotted line represents the expected value of the ATE estima-
tor, computed from the empirical distribution. The distance between solid
and dotted lines represents bias. See the online article for the color version
of this figure.
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run the risk of making these samples incomparable. For example,
the same person may respond differently to a question or situation
when offered $12 versus $80 to participate, especially if the study
measures outcomes such as generosity or cooperation. When using
a double sampling procedure, make sure to consider the extent to
which different incentives may impact the participants’ responses.
However, if researchers manage to collect responses from all of the
participants with missing data with incentives that do not make
Round 1 and Round 2 samples incomparable, the ATE for the
recontacted sample would be point identified.

Assuming that through double random sampling you are able
obtain outcome data for at least some participants whose outcomes
were initially missing, you may proceed with the following code
from the R package “attrition,” developed by Coppock et al.
(2017).

Step 1: Load the Attrition Package

If you have never installed the attrition package, run the
two lines of code below to install the package “attrition,” one line
at a time.

Install.packages(“devtools”™)
devtools::install github(“acoppock/attrition™)

Now that the package is installed, you do not need to repeat the
above installation. Load the package:

library(attrition)

Step 2: Create the r1 Dummy Variable

Create a dummy variable r1, which returns O for participants
whose data are missing, 1 otherwise. We use the following code:

datSrl <- as.numeric(!is.na(datS$DV))

Step 3: Recontact Participants for Whom r1 = 0 and
Create the Attempt Variable

Decide the proportion P(attempt) of participants to recontact
from your r1 = 0 sample. Based on this decision, randomly select
the participants to recontact and offer them another opportunity to
complete the study. Make sure to keep track of the participants
who were recontacted by creating a dummy variable called
attempt, which returns 1 if a participants was recontacted, 0
otherwise. In this hypothetical case, a total of 250 participants
were recontacted (out of 300 initially missing). As mentioned
above, the success of this procedure depends on your ability to
convince a large proportion of the participants that you recontact to
take the study. This implies that, when resources are limited,
recontacting fewer participants would be most effective (e.g., if it
allows you to use more resources to convince each of them to take
the study).

Step 4: Create the r2 Dummy Variable

Create a dummy variable r2, which returns 0 for participants
whose data are still missing after you recontacted some (or all)
participants who had missing outcome, 1 otherwise. In this hypo-
thetical case, 10 out of the 250 participants that were recontacted
are still missing at Round 2.

Step 5: Calculate the Lower and Upper Bounds of the
Estimate of the Average Treatment Effect

Use the estimator_ds function from the attrition pack-
age to estimate the upper and lower bounds of the estimate of the
ATE, as well as its confidence intervals:

estimator_ds(Y = DV,
Z = treatment,
R1 = r1,
Attempt = attempt,
R2 = r2,
minY = min(dat$DV,
maxY = max(dat$DV,
alpha = .05,
data = dat)

est <-

na.rm = T),
T),

na.rm

After going through these different steps, Model 2 produces, on
average,” the following lower and upper estimates of the true
average treatment effect:

ATE,,,,, = 0.80

ATE, ppe, = 1.16

Although recontacting participants does represent a cost, this
approach considerably reduces uncertainty around the average
treatment effect compared to a traditional worst-case bounds anal-
ysis (Manski, 1990). For comparison purposes, using worst-case
bounds on the Round 1 dataset (i.e., without recontacting missing
participants) yields, on average, a lower bound of —3.77 and an

upper bound of 4.88.

Conclusion

The presence of missing data in experimental studies has con-
sequential implications for causal inference. Attrition invalidates
random assignment of participants to the treatment versus control
conditions and introduces bias in the estimate of the average
treatment effect.

In this tutorial, we urge researchers to make realistic assump-
tions about missingness in their data, and we provide concrete
guidelines for two methods that make more realistic and weaker
assumptions to handle missingness in experimental datasets.
After addressing all missingness in covariates included in their
analysis using mean substitution, researchers may correct for
missingness in the dependent variable with inverse probability
weighting or double sampling and bounds. Inverse probability
weighting is purely statistical, which makes it less costly: it can
be implemented immediately by researchers after they finished
collecting their data. Double sampling and bounds relies on a
weaker assumptions, but requires that researchers collect addi-

7 We used simulation to create 1,000 random samples of 2,000 employ-
ees in which we generated MNAR missingness for 300 employees in the
DV. For each of these samples, we used the double sampling and bounds
method to correct for missingness and estimated the lower and upper
bounds average treatment effect. This procedure allowed us to derive the
sampling distribution of the lower and upper bounds of average treatment
effect. The values displayed in the body of this tutorial constitute the
average value of the sampling distribution of the lower and upper bounds
of average treatment effect.
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tional data. Assumptions and decisions about which method to
use is based on human judgment, and researchers should justify
their choices in their articles. Finally, we strongly recommend
that researchers refrain from assuming that missingness was
generated completely randomly. This implies that researchers
should not limit their analysis to the available data without
correcting for missingness.
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